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Abstract. In single objective optimization problems it is easy to find a metric that allows different solutions to be compared and ranked even if 

the optimum is not known. In a multiobjective optimization (MOO), however, a Pareto front must be considered rather than a single optimal 
point. A large number of methods for solving MOO problems have been developed. To compare these methods rigorously, or to measure the 

performance of a particular MOO algorithm quantitatively, a variety of performance metrics have been proposed. This paper presents a new 

performance metric based on Ideal and nadir points that should enable a designer to either monitor the quality of an observed Pareto solution set 
as obtained by a multiobjective optimization method, or compare the quality of observed Pareto solution sets as reported by different 

multiobjective optimization methods, also measuring solution quality are useful during execution of a heuristic procedure, namely as stopping 

rules. Numerical analysis is used to demonstrate the calculation of this metric for an observed Pareto solution set.. The results clearly show that 
our performance metric gives a quick and good means of assessing progress towards true Pareto optimal solution.  
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1. Introduction 

 

The field of multiple-objective linear programming (MOLP) has attracted a lot of attention since the early 1970s 

and many approaches were developed to address these problems. MOLP problems do not generally have a 

unique solution like in single-objective linear programming. Instead, a family of "reasonable'' (nondominated) 

solutions is identified[1,5,9], and the interaction of a DM is required to find the "most preferred'' one. It is 

important for a designer to know how good an observed Pareto solution set is that multiobjective optimization 

method attains. Indeed, knowledge of the goodness of observed Pareto solution set should enable the designer 

monitor and potentially improve the performance of a multiobjective optimization method. 

In the last 10 years, many new multiobjective optimization methods have been created, most of them built 

on well known metaheuristics like simulated annealing or evolutionary algorithms[4,3,7,8]. The main goal of 

multiobjective optimization is to find a set of parameters (a solution) so as to optimize concurrently some 

objective functions. Earlier multiobjective evolutionary algorithms (MOEAs) paid emphasis on getting more and 

more close to the true Pareto optimal (PO) front in the objective space. Comparing the performance of different 

MOEAs is complicated by the fact that the result of a MOEAs run is not a single scalar value but a vector of 

objective values. Also as we know that there are two distinct goals (Fig. 1) in multiobjective optimization[4],  

(i) Discover solutions as close to the PO solutions as possible (which requires search towards the PO 

front).  

(ii) Find solutions as diverse as possible in the obtained nondominated front (which requires search along 

the PO front). 

In multiobjective evolutionary algorithms, various stopping criteria have been developed. One, a total 

number of iterations, If a pre-defined maximum generation number is reached then the algorithm stop. Second, 

stopping criterion is based on the nature of GA. In GA, convergence may occur when all bit positions in all 

strings are identical. All these sopping criteria does not guarantee convergence of the algorithm.  

Also, the issue of evaluating approximations for Pareto set is addressed. Such evaluations are useful when 

performing experimental comparisons of different multiple objective heuristic algorithms, or when defining 

stopping rules of multiple objective heuristic algorithms  

Our aim in this paper is to propose a new metric that allows different solutions to be compared and ranked 

even if the optimum is  not known. Also  it  enable a DM to either monitor the quality of an observed Pareto 

solution set as obtained by a multiobjective optimization methods which help him to take a decision to stop the 

algorithm, or compare the quality of observed Pareto solution sets as reported by different multiobjective 

optimization. 

This paper is organized as follows; some of more recent and important metrics of performance are 

reviewed in section 2. Section 3 gives out new metric for convergence. The numerical analysis is discussed in 

section 4. Conclusion follows in section 6. 

 

 
Fig. (1). Two goals of multiobjective optimization. 
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2. Performance Metrics: A Review 

 

According to Deb [4] the existing performance metrics can be classified into three classes: metrics for 

convergence, metrics for diversity and metrics for both convergence and diversity. For more details the reader is 

referred to [4,2,10] 

Many metrics for measuring the convergence of a set of nondominated solutions towards the Pareto front 

have been proposed. Almost all of these metrics were constructed in order to directly compare two sets of 

nondominated solutions. There are also approaches which compare a set of nondominated solutions with a set of 

Pareto optimal solutions if the true Pareto front is known. In what follows we review some existing metrics for 

convergence. 

(2.1) The S metric 

The S metric has been introduced by Zitzler in [11] and improved in [12]. The S metric measures how 

much of the objective space is dominated by a given nondominated set A. 

Consider a nondominated minimization solution set: 1 2 3{ , , }=A z z z  in a normalized design objective 

space (with the upper bound of the feasible region shifted to the point 
refz  ). The size of the dominated space 

by set A, denoted by S(A), is defined as the volume of the union of hypercubes 1 2{ , ,... }
t

C C C where i
C is a 

hypercube whose two opposite vertices are i
z and 

refz of the objective space. Fig. (2), for instance, shows the 

three hypercubes generated by the non-dominated set 1 2 3{ , , }=A z z z The volume of the union of these two 

hypercubes measures S(A). 

 

 

 

Fig. (2). Size of dominated space, S index, for the set 1 2 3{ , , }=A z z z . 

 

There are many disadvantages to this metric. It strictly requires defining some upper boundary of the 

region within which all feasible points will lie(
refz ). The choice of this boundary does affect the ordering of 

nondominated sets[10]. Also, S metric has a very large computational time. Veldhuizen [10] suggests that metric 

S can be misleading if the Pareto optimal front is non-convex. 

(2.2) The Error ratio (ER) metric 

Error ratio metric has been introduced by Veldhuizen [10] and it is defined as 1==


Q

ii
e

ER
Q

 where Q is 

the number of vectors in the approximation set Z; 0=ie if vector i is in 
*Z and 1 otherwise. Lower values of 

the error ratio represent better nondominated sets. ER is the proportion of non true Pareto points in Z. It is a 

reference metric using 
*Z  as reference set. It induces a total ordering of nondominated sets. 
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It is worth mentioning here that although a member of Q is a Pareto optimal, if that solution does not exist 

in 
*Z , it may be counted in this metric as a non Pareto optimal solution. Another drawback is that if no member 

of Q is in the Pareto optimal set, it does not distinguish  the relative closeness of any set Q from 
*Z . In Fig. (3) 

the nondominated set A on the left has an error of zero. The set A on the right has an error ratio of 4/7 but the set 

on the right is clearly better,  

 

 
Fig. (3). An example when error ratio metric. 

 

(2.3) The C metric  

The metric C, like metric S, was introduced by Zitzler in [12] . Using metric C, two sets of nondominated 

solutions can be compared to each other. 

Let , A B X  be two sets of decision vectors. The function C maps the ordered pair (A, B) to the 

interval [0,1]: 

{ | :
( , )

b B a A a b
C A B

B

 
=

 
The value C(A, B) =1 means that all decision vectors in B are weakly dominated by A. The opposite, 

C(A,B)=0, represents the situation when none of the points in B are weakly dominated by A.  

There are situations when the metric C cannot decide if an obtained front is better than the other. Let us 

suppose that front1 correspond to a set A and front 2 to a set B. In Fig. (4), the surface covered by the front 1 is 

equal to the surface covered by the front 2 but front 2 is closer to the Pareto optimal front than front 1. In this 

situation (and in other situations similar with this) the C metric is not applicable. To eliminate this shortcoming a 

new metric "D metric" was proposed. 

 
Fig. (4). Metric C can not decide between front 1 and front 2. 
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(2.4) The D metric 

Let , A B X  be two sets of decision vectors. the size of the space dominated by A and not dominated 

by B (regarding the objective space) is denoted D(A, B) and is defined as:  

( ,  )  (   ) -  ( ),= +D A B S A B S B  

 

 
Fig. (5). Example of difference between C metric and D metric. 

 

Metric D can be used to solve the inconvenience of Fig. (4). Consider the notations from Fig. (5). By 

applying metric D as follows 

( , ) ,     ( ) ,     ( )= + + = + = +      S A B S A S B  

The metric D for this example is expressed below. 

( , ) ,     ( , )= = D A B D B A  

Then ( , ) ( , )D A B D B A  it results that front 2 dominates front 1. Zitzler [13] suggest that (ideally) the 

D metric is used in combination with the S metric where the values may be normalized by a reference volume V, 

where (for a maximization problem) V is given by: 

max min

1

( )
=

= −
k

i i

i

V f f  

max min  i if and f  represent the maximum respectively minimum value for the objective i
f Thus, the value 

( , )
( , ) =

D A B
D A B

V
represents the relative size of the region (objective space) dominated by A and not 

dominated by B. 

 

3. New Metric For Convergence 

 

In this section we propose a new metric for evaluate the convergence to the Pareto set with no requirement 

to know the true Pareto set or other reference points.  
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Fig. (6). Ideal and Nadir concept. 

 

 

Definition 1. (Ideal objective vector 
*  kz R ) 

An objective vector minimizing each of the objective functions is called an ideal (perfect) objective vector. 

The component 
*

iz of the ideal objective vector
*  kz R are defined by minimizing each of the objective 

functions individually subject to the constraints, that is, by solving 

min  ( )

. . ,      1,..,

if x

s t x S For i k =
 

From the ideal objective vector we obtain the lower bounds of the Pareto optimal set for each objective 

function as depicted in Fig. (6). 

Definition 2. ( Nadir objective vector * 
kz R ) 

Nadir objective vector is the upper bounds of the optimal set, that is, the components of the nadir objective 

vector (imperfect or anti-ideal ).  

The procedure for computing convergence metric is given in the next steps: 

 

Step 0: Calculate the ideal and Nadir objective vector 
*

*,Z Z  

Step 1. Identify the nondominated set Z(t) of population P(t). 

Step 2. Rank nondominated set Z(t ) according to 1(  )f  

Step 3. t=0; 

Step 4. Repeat : 

           Step 5. t=t+1 

            Step 6. AI=Area from  observed Pareto set to ideal point =sum(area of triangles with vertices 
*

1( , , )+t tZ Z Z ) 

Step 7. AN= Area from observed Pareto set to nadir point =sum(area of triangle with vertices 

1 *( , , )+t tZ Z Z ) 

Step 8. Termination: Until  t=size of Z(t ) 

Step 9: Calculate the metric as follows 

: =
+

Proposed metric
AI

A
AI AN

 

 



Measuring Solution Quality of Multiobjective Evolutionary Algorithms  

 

43 

                  
                      (a)                           (b) 

 

 
       (c) 

 
Fig. (7). Three different observed Pareto set. 

 

The proposed metric use the measuring formula with reference information (ideal and nadir points) as 

obtained during the calculation, to enable the designer monitor and potentially improve the performance of a 

multiobjective optimization method. 

 The relative small values of metric A indicate that approximation set 2Z  are closed to the Pareto optimal 

set than the other ser 1Z  in Fig. (7), also the approximation set 3Z  is closed to Pareto than 2Z  and 1Z . 

The proposed metric is easy to understand and easy to calculate, there is no requirement of knowing 

true Pareto optimal front. This metric enable a designer to monitor the quality of an observed Pareto 

solution set as obtained by a multiobjective optimization algorithm and guide it towards the Pareto 

optimal set or compare the quality of observed Pareto solution sets as reported by different 

multiobjective optimization methods.  

Also, evaluating approximations for Pareto set is useful when performing experimental comparisons 

of different multiple objective heuristic algorithms, or when defining stopping rules of multiple objective 

heuristic algorithms  
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4. Numerical Analysis 

 

This section is devoted to the discussion of effects of different problems[6]  and different  Pareto set on the 

proposed metric.  

An iterative Co-evolutionary algorithm for multiobjective optimization problem (IT-CEMOP)[8] was 

applied to different problem. In order to validate the proposed metric graphical representation, statistical analysis 

of the experimental results are presented. Table (1) lists the parameter setting used in the algorithm for all runs.  

 
Table (1). GA parameters. 

Population size (N) 10 

No. of Generation 100 

Crossover probability 0.92 

Mutation probability 0.02 

Selection operator Roulette Wheel 

Crossover operator BLX-α 

Mutation operator Polynomial mutation 

Relative tolerance   10e-2 

 

1 1 2 2 1 2

1 2 1 2 1 2

3 , - 2

. .

2 3 6, 2 4, , 0.

= − = +

+  +  

Problem 1:      

                   

                        

Max z x x Max z x x

S t

x x x x x x

 

The feasible regions of this solution in both decision and criterion spaces are shown in Fig. (8). The 

efficient set is ((0,2),(3/ 2,1)) ((3/ 2,1),(2,0))= E    and the Pareto set is 

(( 2,4),(7 / 2,1/ 2)) ((7 / 2,1/ 2),(6, 2))= −  −P   . The ideal and Nadir point are 

* (6,4)=Z  with 
* 1 3

(3 ,3 )
5 5

=x and  
* ( 2, 2)= − −Z  with *

1 3
( 1 , 1 )

5 5
= − −x . 

 

 

 
(a) 

 
(b) 

Fig. (8). Graph of Problem 1: feasible region in (a) decision space and (b) criterion space. 
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Fig. (9). Experimental results of Problem 1:  (a) Pareto set after 100 generation    (b) Proposed metric vs.  generation. 

 

 

For different observed Pareto set at different generation, graphical representation of the proposed metric is 

presented in Fig. (9). It is obvious that after a few generations the metric deviation is small 


− meanA A  

which coincides with the fact that genetic algorithm convergence to the promising region of solution in first few 

generations. Also, the metric values are constant after generation 85.  

1 1 2 2 1 2

1 2 1 2 1 2

4 , 5

. .

2 3 12 2 8, , 0.

= + = +

+  +  

Problem 2:      

                      

                       ,             

Max z x x Max z x x

S t

x x x x x x

 

The feasible regions of this solution in both decision and criterion spaces are shown in Fig. (10). The 

efficient set is ((0,4),(3,2)) ((3,2),(4,0))= E    and the Pareto set is 

((4,20),(14,13)) ((14,13),(16,4))= P   . The ideal and Nadir point are 
* (16,20)=Z  with 

* 60 64
( , )
19 19

=x and  * (4,4)=Z  with *

16 12
( , )
19 19

=x . 

 
(a) 

 
(b) 

Fig. (10). Graph of problem 2: feasible region in (a) decision space and (b) criterion space. 
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Fig. (11). Experimental results of Problem 2:  (a) Pareto set after 100 generation  (b) Proposed metric vs.  generation.  

 

For different observed Pareto set at different generation, graphical representation of the proposed metric 

are presented in Fig. (11). It is obvious that after a few generations the metric deviation is small 


− meanA A  .Also, the metric values are constant after generation 80.  

2 2

1 2 1 2 1 2 1 2

, (5/ 2)

. .

3 18, 2 13, 4 3 32, , 0.

+ +

+  +  +  

1 1 2 1
Problem 3:     z =x    z =x

                       

                                

Max x Max x

S t

x x x x x x x x

 

The feasible regions of this solution in both decision and criterion spaces are shown in Fig. (12). The 

efficient set is 
1

((9,15),(8,15 ))
2

=E   and the Pareto set is 

(( 2,4),(7 / 2,1/ 2)) ((7 / 2,1/ 2),(6, 2))= −  −P  
. The ideal and Nadir point are 

* 1
(9,15 )

2
=Z  with 

* 2 1
(4 ,4 )

3 3
=x and  

* (8,15)=Z  with *

1 2
(3 ,4 )

3 3
=x . 
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(a) 

 
(b) 

Fig (12). Graph of problem 3: feasible region in (a) decision space and (b) criterion space. 
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Fig. (13). Experimental results of Problem 3:  (a) Pareto set   (b) Proposed metric vs.  generation. 

 

 

For different observed Pareto set at different generation, graphical representation of the proposed metric 

are presented in Fig. (13).The metric values are constant after generation 65.  

2 2

1 2 1 2 1 2 1 2

max , max 5

. .

3 18, 2 13, 4 3 32, , 0.

+ +

+  +  +  

1 1 2 1
Problem 4:  z =2x    z =x

                    

                            

x x

S t

x x x x x x x x
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The feasible regions of this solution in both decision and criterion spaces are shown in Fig. (14). The 

efficient set is ((8,0),(5,4)) ((5,4),(3,5)) ((3,5),(0,6))=  E     and the Pareto set is 

((16,8),(14,25)) ((14,25),(11,28)) ((11,28),(6,30))=  P    . The ideal and Nadir 

point are 
* (16,30)=Z  with 

* 5 8
(5 ,4 )

9 9
=x and  * (6,8)=Z  with *

4 1
(2 ,1 )

9 9
=x . 

 

 

 
 

(a) 

 
(b) 

Fig. (14). Graph of problem 4: feasible region in (a) decision space and (b) criterion space. 
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Fig. (15). Experimental results of Problem 4:  (a) Pareto set after 100 generation   (b) Proposed metric vs.  generation. 
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For different Pareto set at different generation, graphical representation of the proposed metric are 

presented in Fig. (15) It is declare after 86 generation the metric values are constant.  

  

1 1 2 2 1 2

2 1 2 1 2

Problem 5: Max z =-4x +5x  , Max z =5x -4x

                   S.t.

                    x 3  ,      x +x 4,       x ,x 0.

 

The feasible regions of this solution in both decision and criterion spaces are shown in Fig. (16). The 

efficient set is ((0,3),(1,3)) ((1,3),(4,0))= E    and the Pareto set is 

((15, 12),(11, 7)) ((11, 7),( 16,20))= − −  − −P   . The ideal and Nadir point are 

* (15,20)=Z  with 
* 7 2

(17 ,17 )
9 9

=x and 
* ( 16, 12)= − −Z  with *

7 2
( 13 ,14 )

9 9
= −x . 

 

 

 
(a) 

 
(b) 

Fig. (16). Graph of problem 5: feasible region in (a) decision space and (b) criterion space. 

 

 

0 50 100
0.4855

0.486

0.4865

0.487

0.4875

0.488

0.4885

0.489

Generation

Pr
op

os
ed

 m
etr

ic

-20 -10 0 10 20
-15

-10

-5

0

5

10

15

20

F
1

F 2

 
Fig. (17). Experimental results of Problem 5:  (a) Pareto set after 100 generation   (b) Proposed metric vs.  generation. 
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For different Pareto set at different generation, graphical representation of the proposed metric are 

presented in Fig. (17). It is obvious after 64 generation the metric values are constant.  

1 1 2 2 1 2

1 2 1 2 1 2

. .

12 2 5 20, , 0.

= − = +

+  +  

Problem 6:     ,  

                    

                         ,            

Max z x x Max z x x

S t

x x x x x x

 

The feasible regions of this solution in both decision and criterion spaces are shown in Fig. (18). The 

efficient set is ((5,2),(6,0))=E   and the Pareto set is ((3,7),(6,6))=P  . The ideal and Nadir 

point are 
* (6,7)=Z  with 

* 1 1
(6 , )

2 2
=x and  * (3,6)=Z  with *

1 1
(4 ,1 )

2 2
=x . 

 

 

 
(a) 

 
(b) 

Fig. (18). Graph of problem 6: feasible region in (a) decision space and (b) criterion space. 
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Fig. (19). Experimental results of Problem 6:  (a) Pareto set after 100 generation   (b) Proposed metric vs.  generation. 

 

For different Pareto set at different generation, graphical representation of the proposed metric are 

presented in Fig. (19) It is obvious that after 47 generation the metric values are constant.  

As the result the proposed metric can be used as a stopping criteria which save computational time for the 

previous problems as in table (2). 
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Table (2). Percentage of computational time saving. 

Problem Percentage saving Problem Percentage saving 

Problem 1 
100 85

15%
100

−
=  Problem 4 

100 86
14%

100

−
=  

Problem 2 
100 80

20%
100

−
=  Problem 5 

100 64
36%

100

−
=  

Problem 3 
100 65

35%
100

−
=  Problem 6 

100 47
53%

100

−
=  

 

5. Conclusion 

 

Many metrics have been proposed in the last years. Most of them calculate the convergence to an obtained 

set of solutions to the true Pareto front. We can not say that one metric is the best. Some of them are preferred to 

the others by considering the computation complexity. For different classes of problems different types of 

metrics can be preferred 

The performance metric presented in this paper provide a means to measure the goodness of an observed 

Pareto solution set. The following are the significant characteristics of this metric : 

(a) There is no requirement of knowing the true Pareto optimal front.  

(b) It is easy to understand and easy to implement.  

(c) It can be used to compare the goodness of observed Pareto solutions as reported by multiobjective 

optimization method. 

(d) It can be used as stopping criteria in evolutionary algorithms. 

(e) By using this metric, the quality of various multiobjective optimization methods can be compared 

against one another.  

Experimental results show that the proposed metric may hopefully be a good monitoring through the 

algorithm proceed toward Pareto optimal solution. 
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 قياس مدى كفاءة الحلول الناتجة من طرق التقييم المختلفة لمشاكل الأمثلية المتعددة الأهداف

 
 عبدالله   أ.  موسى

 قسم العلوم الأساسية الهندسية، كلية الهندسة ، جامعة المنوفية ، مصر
 (م2/2/2009 في ؛ وقبل للنشرم24/11/2007 في قدم للنشر) 

 
يساا بم اقاة ااة ا لااول الملمشلكااة لمشاااكل الأملهليااة ااد الهاادف الواتىااد و صاانيكها  تىاا  ماا    Metric قيااا من السهل إيجااام م  .البحث ملخص

 Multiobjectiveعدم معرفة ا ل الأملهل.  في تىين أن من الصعب إيجام ملهاال اااقا لمقيااا    في تىالااة مشاااكل الأملهليااة ااد الأاااداف المشعاادم  
. ويوجد العديااد ماان الااارخ المسااشلمدمة في تىاال مشاااكل الأملهليااة ااد  (Pareto optimal front ) لول  ظراً لان ا ل انا او مج وعة كبير  من ا

ولابااد لشلااك المقااايي  ماان أن  Metricsالأاداف المشعدم  ولمقاة ة  لك الارخ الملمشلكة أو لقيا  مدى أماء أي منها يوجد العديد من المقااايي  
مكن المص م من مشابعة وملاتىظة مدى ككاء  ا لول الناتجة ومقاة ة ا لول الناتجة من طرخ مخشلكة لشقييم آي  لك الارخ أفضل .  ُ  دً

بحيااث نكاان    Ideal point , Nadir pointجديد اعش ااد    بنا ااى علاا  تىسااا  كاالا ماان  Metricفي اقا البحث تم   قديم و وظيف مقيا        
اسشلمدام اقا المقيا  وسيلى يااشم  ااا مقاة ااى ا لااول الناتجااى عاان طاارخ مخشلكااى لشحديااد ايهااا أفضاال وكااقلك  تم اسااشلمدامى كوساايلة سااريعة وجيااد  

خاالال مج وعااة وتم  وظيف اقا المقيااا  ماان   Stopping criteria لشقييم مدى الشقدم في اتجاه ا ل الاملهل  بحيث نكن اسشلمدامى كوسيلى  وقف
لاملهاال مخشلكى من  الشابيقاد وأكدد النشا ج  أن اقا المقيا  يعشبر وسيلى جيده وفاعلى لشقييم ا ل وماادى الشقاادم   اتجاااه الو ااول ا  ا اال ا

True Pareto solution. 
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