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1. Introduction 

 

Let ( ) na a n=   be a complex-valued function defined on the  -finite measure  space  ( )X A      

where =X ,  2=A , the power  set   of X  and  

 =  counting measure. The distribution function of the complex-valued function ( ) na a n=   is 

defined as  

( ) { ( ) } 0a s n a n s s =        

By a
 we mean the non-increasing rearrangement of a  given as  

( ) inf{ 0 ( ) } 0aa t s s t t =        

We can interpret the non-increasing rearrangement of a  with ( ) 0a s s      as a sequence 

( )n na  , if we define for 1n t n−      

( ) ( ) inf{ 0 ( ) 1}n aa a t s s n = =    −   

Then ( )n na a =   is the sequence ( ) na n   permuted in a decreasing order.  

The Lorentz-sequence space ( ) 1 1l p q p q        , is the set of all complex sequences 

( ) na a n=   such that 
( )|| ||  p qa , where  

1
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( )

1

1
( )

1

( ) , 1 , 1

( ) sup 1
|| ||

q

p q
n
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p q n a p q
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=

 



  
    

  
    =




= 



 

The Lorentz-sequence space ( ) 1 1l p q p q        ,  is a linear space and ( )|| || p q  is a quasi-

norm. Moreover ( ) 1 1l p q p q        ,  is complete with respect to the quasi-norm ( )|| || p q  and 

( ) 1l p q q p       with respect to ( )|| || p q  is a complete normed linear space. Throughout this paper we 

consider the spaces ( ) 1 1l p q p q        ,  with respect to ( )|| || p q . The 
pl - spaces for 1 p    

are equivalent to the spaces ( )l p p . For more details on Lorentz spaces one can refer to [ 2, 6, 7 and 8] and 

references therein. Such spaces ( )l p q  fall in the category of ( )L p q  spaces [7] as well as in the category of 

functional Banach spaces [6].  

A study of the duals, isomorphic 
pl − subspaces of Orlicz-Lorentz sequence spaces wL  [6 and 8] is made 

by Kaminska and others. In [10] isomorphic properties of Orlicz-Lorentz sequence spaces are discussed. The 

Lorentz-sequence space ( )l p q  coincides with wL   when ( ) qt t =  and the weight sequence 

( ) 1( ) q pw n n  −= . Multiplication and composition operators are studied in various function spaces in [1, 3, 5 and 

11]. In [12], these operators are studied on weak Lebesgue space 
pl .  

Let T  →  be a mapping and ( ) nu u n=   be a complex sequence (or complex-valued function 

on ), we define a linear transformation u TW   on the Lorentz-sequence space 

( ) 1 1l p q p q         into the linear space of all complex sequences by  

( ) ( ( )) ( ( ))u T nW f u T f T u T n f T n =  =   

where ( ) ( )nf f n l p q=    . If u TW   is bounded with range in ( )l p q , then it is called a weighted 
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composition operator on ( )l p q . ( ( ))B l p q  denotes the algebra of all bounded linear operators on ( )l p q . 

An operator ( ( ))A B l p q   is said to be Fredholm if it has closed range, ( ( ))dim Ker A  and 

( ( ))codim R A  are finite, where ( ( ))dim Ker A  is the dimension of the kernel of A  and ( ( ))codim R A  is 

the co-dimension of the range of A , namely the dimension of any subspace complimentary to the range of A .  

In this paper we are interested in the study of  boundedness and Fredholmness of the weighted composition 

operator on Lorentz-sequence spaces ( ) 1 1l p q p q        . Boundedness of the weighted 

composition operator is characterized. Weighted composition operator with closed range is also characterize 

 

2. Boundedness 

 

The section is devoted to the study of weighted composition   operators ( )u TW f u T f T   on the 

space ( ) 1 1l p q p q                 induced by a sequence ( ) nu u n=   and a mapping 

T  → . Boundedness of u TW   is characterized. Various examples are presented in this section.  

Definition 2.1.  A sequence ( ) nu u n=   and a mapping T  →  are said to be finitely related if  

 
1({ })T n −    

for all ( ) { ( ) 0}n S T n u n =      

Definition 2.2 For some 0M  , if the sequence ( ) nu u n=   and the mapping T  →  satisfy  

 
1({ })T n M −   

for all ( ) { ( ) 0},n S T n u n =     then u  and T  are said to be M − related. 

       A necessary condition for the range of  u TW   to lie in ( ) 1 1l p q p q         is that u  and T  

are finitely related. For if 
1({ })T n −

 is not finite for some n S  then ( )n n me e m=  , where  

                                          
1 if m n

( )
0 otherwise

ne m
 = 

= 


 

satisfies ( ) 1 1ne l p q p q          with ( ) 1n p qe   =  but u T nW e  does not lie in ( )l p q .  

      Existence of such u  and T  can be seen by various examples.  

 

Example 2.3.  Let ( ) nu u n=   where  

                                           
1 if n 2

( )
0 otherwise

u n
 = 

= 


 

and define T  →  as  

                                            
if n is odd

( )
2 if n is even

n
T n

 
= 

 
 

 

Then  ( ) { ( ) 0} {2}S T n u n=    =   Clearly u  and T  are not finitely related.  

Example 2.4.  Define ( ) nu u n=   as  

                                            
0 if n is odd

( )
if n is even

u n
n

 
= 


 

and T  →  as ( ) 2T n n n=       
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Then  {2 }S n n=    and 
1({ }) 1T n − =    for all  n S ,  so that u  and T  are 1-related.  

 

Example 2.5.  Define ( ) nu u n=   as  

                                           
0 if n is odd

( )
1 if n is even

u n
 

= 


 

and T  →  as  

                                           
1 if n is odd

( )
if n is even

T n
n

 
= 

 
 

Then u  and T  are 1-related. 

  

Example 2.6. Define ( ) nu u n=   as ( ) 1u n n=    and T  →  as ( )T m n=  if 

12 2n nm−   . Then 
1 1({ }) 2 ( )nT n n S − −=    =   Hence u  and     T  are finitely related but not M -

related for any 0M  .In case 1 1q p or q p    =      for each n , let ( 1)p

nm n= +  

and if 1 p q     then ( 1)q

nm n= +  for each n .  

     Then in any case, ( )
n nm m ke e k=   where  

                                          
1 if k

( )
0 otherwisen

n

m

m
e k

 = 
= 


 

satisfies ( )
nme l p q   with 

( ) 1
nm p qe   = .  

     Now ( ( )) ( ( ))
n nu T m m kW e u T k e T k =   where  

                                            

11 if ({ })
( ( )) ( ( ))

0 otherwisen

n

m

k T m
u T k e T k

−   
= 

 
 

Hence for 1 1q p or p q          

                       ( ) ( )1

1 1
1 (2 )

2 ( ({ }))

q

n n

q n q q

u T m p q m p qr r

n

W e n e
T m

  −
  = + + +        

where 1
q

p
r = −  .  

For 1q p=     , we have  

 

                       

1

( ) ( ) ( )
1

sup ( )
n n n

p

u T m p q m k m p q
k

W e k u T e T n e 

  


  =     
 

     In this example we have seen that finite relatedness of u  and T  doesn’t ensure the boundedness of u TW   on 

( )1 1l p q p q       .  

 

Example 2.7.  Define ( ) nu u n=   as  

                                           
if n is odd

( )
0 if n is even

n
u n

 
= 
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and T  →  as ( ) 2T n n n=      Then u  and T  are M -related. Here T  is injective, u  is 

unbounded whereas ( 0)u TW  =  is bounded. 

  

Theorem 2.8.  Suppose ( ) nu u n=   and T  →  are M -related for some 0M  . Then a necessary 

and sufficient condition for the boundedness of u TW   is that there exists an 0M    such that  

 ( )u n M    

for all  ( ) { ( ) 0}n S T n u n =       

 

Proof.  Suppose ( ) nu u n=   and  T  →  are such that for some k   

                           
1( ) and ({ })u m k T m k m S −        

Then for ( ) ( )na a n l p q=     and 0t  ,  

                          
( ) ( ) inf{ 0 ( ) }

inf{ 0 ( ) } ( )

u T a T

a

u T a T kt s s kt

s s k t ka t











 =   

     = 
 

 

Hence  

                           

( )

( 1)

( ) ( ) ( 1)

1
( ) ( ( ))

1
( )

{0} 1 2

pk m

p

u T a T u T a T pk m

m
u T a T k p

k

m
ka p

k

ka p m k

 

+







+

 =  + −

−
=  +

−
 +

=      =    

 

This gives for  1 1p q    , i.e. for 1 1q p or p q          

                           

( ) 1

( ) ( )

1

2
( )

(( ) )q q q p

u T p q n

n

qq
p q

W a u T a T n

k a


  −

 

=



  = 

  


 

and for 1q p=     ,  

 

                          

1

( ) ( )
1

2
( )

sup ( )p

u T p q n
n

p q

W a n u T a T

k a

 

 




  = 

   
 

 

Hence u TW   is bounded operator on ( ) 1 1l p q p q        .  

     Conversely, let u TW   be a bounded operator on ( ) 1 1l p q p q         and let 1M    be such 

that  

                          ( ) ( ) for all ( )u T p q p qW f M f f l p q

           

 

In particular, for each ( )mm S e l p q     and  



S.C. Arora et al. 

 

14 

                                     ( ( )) ( ( ))u T m m kW e u T k e T k =   

 

where  

                      

1( ) if ({ })
( ( )) ( ( ))

0 otherwise
m

u m k T m
u T k e T k

−   
= 


 

so that  

                               
( ) ( )u T m p qW e u m        

Thus ( )( ) u T m p qu m W e M 

         Hence the theorem.   

Corollary 2.9.  Suppose ( ) nu u n=   and T  →  are such that ( ) 1u n n S       Then the linear 

transformation u TW   on ( )l p q  is bounded if and only if  

(i):  u  and T  are M -related for some 0M  .  

(ii): 0M    such that ( )u n M    for all n S .  

Proof. In view of the Theorem 2.8, it is enough to prove that condition (i) holds when u TW   is bounded. If 

possible (i) doesn’t hold. In case 1 1q p or q p    =      then for each n , let nm S  be 

such that  

                                      
1({ }) p

nT m n −   

and if 1 p q     then for each n  take nm S  such that  

 
1({ }) q

nT m n −    

 In any case, ( )
nme l p q     

Then for 1 1p q      ,  

 
1

1

( ) 1

({ }) ( ) , 1

({ }) ( ) , 1

( )

1 1
( ) [1 ]

2 ( ({ }))n

q p q
n n

q
n n

n

q q

u T m p q n r r

n

T m u m q p

T m u m p q

q q

m p q

W e u m
T m

n e






− 

−

  −

    

    



  =   + + +



  

 

where r 1 .
q

p
= −  

Also for 1q p=      

                     

1

( ) ( )
1

1 1

( )

W sup ( )

( ({ })) ( )

n n

n

p

u T m p q m n
n

p

n n

m p q

e n u T e T

T m u m

n e



 

 


− 



  = 

=  

   

 

This contradicts the boundedness of u TW  . Hence the result.   

In the Example 2.7, we have seen that boundedness of u  is not necessary condition for the boundedness of 

u TW   when T  is injective. The next corollary states that if T  is bijective then it is necessary as well as 
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sufficient condition for the boundedness of u TW  .  

Corollary 2.10.  Suppose T  →  is a bijective mapping and ( ) nu u n=   is a given sequence. Then 

( ) ( )u TW l p q l p q   →   is bounded if and only if u  is bounded.  

Proof.  Injectiveness of T  ensures that u & T  are M -related for 1M  . Hence we only need to show that if 

u TW   is bounded then u  is bounded.  

     If u TW   is bounded then, for some 0 0M  ,  

                                           
( ) 0 ( )u T p q p qW a M a         

for all ( )a l p q  . For each n   let nk  be the unique natural number such that ( )nT k n= , then  

                                           
( ) 0u T n p qW e M      

or equivalently 0( )u n M  . Thus u  is bounded.   

Theorem 2.11.  Let ( ) nu u n=   and T  →  are such that ( )T E E   for each 0    where  

                                          { ( ) }E n u n =      

Then u  is bounded if ( ) ( )u TW l p q l p q   →   is bounded.  

 

Proof.  Suppose ( ) ( )u TW l p q l p q   →   is bounded. In case u  is not bounded, then for each n    

                                          { ( ) }nE m u m n=     

is an infinite set. Choose a natural number 
np  in ( )nT E  and take { }n

nF p= . As u TW   is bounded on 

( )l p q  so u  and T  are finitely related. Being ( ) { ( ) 0}np T n u n    , we find that 
1( )nT F−

 is a 

non-empty finite set. Now define  ( )
n nF F ma a m=   where  

                                            
1 if

( )
0 otherwisen

n

F

m F
a m

  
= 

 
 

Then 
( ) 1

nF p qa   = . Simple computation shows that  

                                         ( ) ( )( ) ( )
n n

n

u T F p q F p qW a u p n n a       =     

Thus, for each n  we can find ( )nf l p q   satisfying  

                                         
( ) ( )u T n p q n p qW f n f         

This contradicts the boundedness of u TW  , hence u  must be bounded.   

 

Example 2.12. Let k . Define T  →  as  

 
1 if

( )
if

n k
T n

n n k

  
= 

 
 

 

 

and ( ) nu u n=   as  

                                               
0 if 1

( )
1 if 1

n
u n

n

  
= 

 = 
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Then for each 0  ,  

                                              

{ ( ) }

if 1

1 if 1

E n u n 

 



=   

  
= 

 

 

so that ( )T E E   for each 0    Here u & T  are k -related, u  is bounded so that u TW   is a bounded 

operator although T  is not injective.  

 

3. Closed Range 

 

     In this section we characterize the weighted composition operators on ( )l p q  having closed range and 

Fredholm weighted composition operators on ( ) 1 1l p q p q        .  

 

Theorem 3.1. Let ( ) nu u n=   and T  →  are M -related for some 0M  . Then 

( ( )) 1 1u TW B l p q p q         has closed range if and only if there exists a 0   such that  

                                                            ( )u n    

for all  ( ) { ( ) 0}n S T n u n =      

  

Proof.  Let ( ) nu u n=   and T  →  are M -related for some 0M   with ( ( ))u TW B l p q   . Let 

there exists a 0   such that ( )u n    for all n S . Let 
( ) ( ) ( ) ( )k k

nf f n l p q=     be such that 

( )k

u TW f f →  as k →  where ( ) ( )nf f n l p q=    . Then  

                         
( ) ( )

( ) 0 asn m

u T u T p qW f W f n m   −  →  →  

For each k , put 
( ) ( ) ( )k k

ng g n=   where  

                            

( )

( ) ( ) if
( )

0 otherwise

k

k f n n S
g n

   
= 

 
 

Then 
( ) ( )( ) ( )k kg n f n n       and we find that 

( ) ( )kg l p q   for each k . Also 

( ) ( )k k

u T u TW g W f =  as for each n ,  

                          

( )

( )

( )

( ( )) ( ( )) if ( )
( )( )

0 otherwise

( )( )

k

k

k

u T n f T n T n S
u T g T n

u T f T n

   
 = 

 

=  

 

Moreover 
( ) ( ) ( ) ( )( )( ) ( )( )n m n mg g k f f k −    −   for all k . Hence  

                             
( ) ( ) ( ) ( )

( ) ( )

n m n m

p q p qg g f f  −    −    

 

Now we claim that for each k ,  

                                    
( ) ( ) ( ) ( )

( ) ( )( ) ( ( ))n m n m

k u T kg g W g g  

−  −   

For each k S  say ( )kk T s=  for some ks  , we have  
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( ) ( ) ( ) ( )

( ) ( )

( )( ) ( )( ( ))

( ( ))( )

n m n m

k

n m

u T k

f f k f f T s

W f f s

 



 −  =  − 

  −  
 

This gives for all k ,  

                                

( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( )

( ) ( ( ))

( ( ))

n m n m

k u T k

n m
u T k

g g W f f

W g g

  






−  −

= − 
 

Therefore for 1 1p q      , i.e. for 1 1q p or p q          

                         

( ) ( ) ( ) ( ) ( ) 1

( ) ( )

1

( ) ( ) ( ) 1
( )

1

( ) ( )
( )

( ) ( )
( )

(( ) )

1
(( ( ) ))

1

1

0 as

n m q n m q q p

p q k

k

n m q q p
u T kq

k

qn m
u T u T p qq

qn m
u T u T p qq

g g g g k

W g g k

W g W g

W f W f

n m








  −



=


 −



=

  

  

 −  = −

 −

=  − 

=  − 

→  →





 

and also for 1q p=     ,  

 

                        

( ) ( ) 1 ( ) ( )

( ) ( )
1

( ) ( )

( )

( ) ( )
( )

sup (( ) )

1

1

0 as

n m p n m

p q k
k

n m

u T u T p q

n m
u T u T p q

g g k g g

W g W g

W f W f

n m





 




  

  

 −  = −

  − 

=  − 

→  →

 

     As ( ) 1 1l p q p q       is complete and 
( )n

ng   is a Cauchy sequence in ( )l p q  so we 

find ( )g l p q   such that 
( )ng g→  as n → , and hence  

                               
( ) ( ) asn n

u T u T u TW f W g W g n  = → →  

Thus 
u Tf W g=  so that u TW   has closed range.  

Conversely, if u TW   has closed range then for some 0    

                                              ( ) ( )u T p q p qW f f        

for all ( )pqf l S , where  

                  ( ) { ( ) ( ) ( ) 0 }.pq nl S a a n l p q a n n S= =     =   ‚  

 In case S = , then nothing to prove. Suppose S  . Consider the case 1 q p    . We claim that  
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1

( )
q

u m
M




   

for all m S . If possible  

                                                            
1

( )
q

u m
M




   

for some m S , then ( )m pqe l S  and  

                                                    ( ) ( )q q q

u T m p qW e u m M          

which is a contradiction. Hence  

                                                    
1

( ) for all
q

u m m S
M




      

For 1 1p q or q p    =      we find that  

                                                    
1

( ) for all
p

u m m S
M




      

Hence in any case we can find a 0   such that ( )u n    for all  ( ) { ( ) 0}n S T n u n =        

 

Theorem 3.2.  Suppose ( ) nu u n=   and T  →  are M -related for some 0M  . Then 

( ( )) 1 1u TW B l p q p q         is Fredholm if and only if  

(i):    S‚  is a finite set.  

(ii):  
1{ ({ }) 2}E n T n −=     is a finite set.  

(iii):  there exists 0   such that ( )u n n S        

Proof. Suppose ( ( ))u TW B l p q    is Fredholm. As ( )u T pqKerW l S = ‚ , where  

                                 ( ) { ( ) ( ) ( ) 0 }pq nl S a a n l p q a n n S= =     =   ‚  

so S‚  is a finite set.  

     Also, if the set 
1{ ({ }) 2}E n T n −=     is an infinite set then for each k E , let k kn m   are 

such that ( ) ( )k k k kT n T m n m=      

     For each k E , define ( )k k mf f m=   where  

                                   

1 if

( ) 1 if

0 if

k

k k

k k

m n

f m m m

m n m

 = 


= −  = 
    

 

      Then ( ) ( )k u Tf l p q R W   ‚ . Moreover { }kf k E   is linearly independent hence 

( ) ( )u Tl p q R W  ‚  is infinite dimensional, which is a contradiction. Therefore E  is a finite set. Condition (iii) 

is obvious in view of the Theorem 3.1. Converse is easy to prove.   
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