Journal of Natural Sciences and Mathematics Qassim University, Vol. 8, No. 1, PP 77-96 (January 2015/Rabi I 1436H.)

Revised Analysis of the Spectrum of Singly Ionised Antimony: SbII

Tazeen Rana

Physics Department, Deanship of Educational Services, Qassim University, Al

Qassim, Saudi Arabia

Abstract. The spectrum of antimony was recorded in the $300 - 2080\text{\AA}$ region on a 3m normal incidence vacuum spectrograph, at the Physics Department, St. Francis Xavier University, Antigonish, Nova Scotia, Canada. The analysis is considerably extended to complete the configuration 5p6d, for the first time. All other reported levels of 5s5p³, 5p5d, 5p6s and 5p7s were also confirmed. The three transitions without good intensities at 95802.6, 93197.5 and 86066.8 cm⁻¹ have been identified to establish the missing 5s5p³ ¹D₂ level, fitting nicely into the least squares fitted calculations almost for all the reported levels of 5p6p, five of the 5p7p and two of the 5p4f, Beside that a few more levels with dual J values without any configuration assignment are also listed and I have tried to interpret these levels theoretically. The Hartree- Fock calculations with relativistic corrections using Cowan Codes for Sb II to get ab- initio energy parameters used in the level fitting calculations are used.

Introduction

The electronic distribution for ground state configuration of singly ionized antimony (Sb II) is $5s^2 5p^2$. Thus $5p^2$ is the ground configuration with 5 levels ${}^{3}P_{0,1,2} {}^{1}D_2$ and ¹S₀. ³P₀ being the ground most level. The excited configurations are of the type 5pnl constituting singlet and triplet structures. The internal excitation of 5s to 5p leads to $5s5p^3$ and there after $5s5p^25d + 5s5p^26s$ becomes 4-e system exhibiting extremely complex structure. The configurations of odd parity lying very close to each other and overlapping, therefore, strong interaction is seen in the entire sequence Te III - La VIII [1 - 6]. The leading multiplet of this spectrum was first reported by Lang and Vestine [7], followed by two more papers one by Krishnamurty [8] and the other by Murakawa and Suwa [9]. The three term lists were discordant, to provide a satisfactory array of energy levels. Charlotte E. Moore [10] used the line list published by Lang and Vestine in the region 691Å to 7343Å and unpublished measurements by W.F. Meggers (1272 Å - 8742 Å) to improve the level values of the published multiplets. The agreement was not good with the tolerance between the observed and calculated wave numbers. With a few more tentative revisions, she compiled the data in Atomic Energy Level, A.E.L (10). The limit was adapted from Murakawa and Suwa's paper at 133327.5 cm⁻¹.Arcimowicz, Joshi and Kaufman [11] published the $5p^2$ - $(5s5p^3 +$ 5p5d + 5p6s + 5p7s) transition array with theoretical support. Since Sb II sequence has been studied very well recently [1-6], therefore, once again Sb II was undertaken to present even better picture.

Experimental Procedures

The recorded plates at Zeeman lab Amsterdam using hollow cathode source, are the most suitable for singly ionized spectra as well as the plates recorded in Antigonish lab with triggered spark source using high inductance coil in the discharge circuit, also being quite good for Sb II lines. The National Institute of Standard and Technology (NIST) hollow cathode plates were also available to me at the time of the analysis. This provided me very good data to analyze the spectrum of singly ionized antimony atoms. The spectrum of antimony was recorded in the 300Å -2080Å wavelength region on a 3m normal incidence vacuum spectrograph at the Antigonish laboratory. This Spectrograph is equipped with a 2400 lines/mm holographic grating giving an inverse dispersion of 1.385Å in the first order. The source used was a triggered spark with charging potential of 2-5 KV across a low inductance (few nano henry) capacitor of value 14.7 microfarad. Pure antimony powder was packed into the cavity of aluminium electrodes. The ionization discrimination among antimony lines belonging to different ionization stages was achieved by studying the line aspect (principally its length polarity) or its intensity when series inductance was introduced. All exposures were taken on Kodak SWR plates and the Spectrograms were measured on a grant comparator at the Antigonish laboratory in Canada and on an abbe comparator in Aligarh. The wavelengths were calculated by using internal standards of C, N, O, and Al [8]. The wavelength accuracy for the symmetric lines are ± 0.005 Å in the wavelength region. Independent analysis was performed for the resonance transitions without considering the published data [11]. All the ground levels reported by Arcimowicz [11] were confirmed. Further experimental details can be found in our earlier publication [12].

Results and Discussion

Hartree - Fock calculations are performed. The atomic energy structure expressed in Hartree- Fock Slater theory is in the form of complicated integro- differential equation. Which have been simplified so as to divide the whole complex into smaller manageable integrals, called "Slater Parameters" written in the form of F^k, G^k, R^k and ζ_{nl} and E_{av} including approximate relativistic and correlation energy corrections as explained , these integrals can be evaluated on rigorous treated simply as adjustable parameters in application to observed spectra.

The integral $F^k(n_l,n_1)$ represent that part of the electrostatic energy which depends on the orientation of the l- vectors and is responsible for the separation of terms with different L- values in LS coupling notation those denoted by $G^k(nl, nl)$ are the exchange integrals that give energies due to the exchange forces which depends on the spin orientations; they cause the splitting of terms with equal L but different total spin S, for instance the separation of singlet term from the triplet etc. ζ_{nl} is the magnetic spin orbit interaction responsible for fine structure splitting. E_{av} including approximate relativistic and correlation energy corrections. Relativistic Hartree- Fock Multi Configuration Interaction method have been utilized to predict the structure of the ions.

Using the scaling from the isoelectronic sequence members from Te III - La VIII [1-6] multi-configuration interaction calculations were performed to predict the $5p^2$ - ($5s5p^3 + 5p5d + 5p6d + 5p6s + 5p7s$) transition array. All other levels of $5s5p^3$, 5p5d, 5p6s and 5p7s, reported in reference [11] were also confirmed. The three transitions without good intensities at 95802.6, 93197.5 and 86066.8 cm⁻¹ have been identified to establish the missing $5s5p^3$, 1D_2 level in ref. [11], fitting nicely into the least squares fitted calculations. This is worth pointing out that the level 85094.1 (J=1) in ref [11] deviating by 1285 cm⁻¹ is fitting very well in my least squares fit.

I have tried to solve some of the ambiguity seen in Atomic Energy Level, AEL [10], where almost all the levels of 5p6p, five of the 5p7p and two of the 5p4f are reported. Beside that a few more levels with dual J values without any configuration assignment are also listed. I have tried to interpret these levels theoretically using the scaling factors of the parameters (both Slater as well as interaction) of unknown configurations were fixed at the predetermined values in accordance with the values in other iso electronic sequence spectra in the entire sequence Te III - La VIII [1 - 6]. It is interesting to mention that most of the 5p6p levels are interpreted well except a couple of singlet levels namely ${}^{1}P_{1}$ and ${}^{1}S_{0}$. For instance 5p6p ${}^{1}P_{1}$ given with a question mark at 87831.0 cm⁻¹ did not fit at all, into

my least squares fitted calculations, consequently a listed level at 90608.4 cm⁻¹ without any designation was opted as 5p6p $^{1}P_{1}$ and the other singlet of 5p6p, namely $^{1}S_{0}$ was also found to be too low, therefore the level listed as 5p7p $^{1}S_{0}$ at 96910.9 cm⁻¹ was considered for 5p6p $^{1}S_{0}$. This level fitted well with reasonable parameter values. In fact none of the 5p7p is calculated to be below 108691 cm⁻¹ and this particular level 5p7p $^{1}S_{0}$ was calculated at 117693 cm⁻¹. Thus I can say confidently that none of the 5p7p reported levels belong to 5p7p configurations. However, only two levels of 5p4f are reported in reference [11] seems to be very close to my calculated values, may be correct.

It must be pointed out that the doubly excited configurations 5p6p, and 5p4f, though expected to give strong transitions to 5p5d and 5p6s configurations but lie outside the range of my investigation. My preliminary calculations show that the region is almost visible and even higher. Therefore, 5p6p and 5p4f levels could not be investigated. calculations show that the 5p (5d + 6s) - 5p (4f + 6p) transitions lie outside my region of investigation (above 3200Å), therefore, at the moment I was unable to confirm the reported levels of 5p4f and 5p6p configurations.

The classified lines of SbII are mentioned in table (1). The Fitted and HFR (Hartree Fock Relativistic Calculation) energy parameter values in cm⁻¹ and scaling factors for odd parity configurations are given in table (2). The experimental and Least Squares Fitted percentage composition of odd parity configurations $5s5p^3$, 5p5d, 5p6d, 5p6s, 5p7s, and their level values are given in table (3). The Fitted and HFR (Hartree Fock Relativistic Calculation) energy parameter values in cm⁻¹ and scaling factors for even parity configurations are given in table (4) and the observed and Least Square Fitted (LSF) energy levels in cm⁻¹ for even parity configurations of $5s^25p^2$ and 5p6p are given in table (5).

λ(Å)	ν(cm ⁻¹)	Int.	Classifications	Diff.
856.345	116775.4	30	$5s^25p^2$ $^3P_0 - sp^3$ 1P_1	-0.001
914.896*	109302.0	15	$5s^25p^2 {}^3P_1 - 5p6d {}^3P_0$	0.000
930.523*	107466.4	58	$5s^25p^2 {}^3P_0 - 5p6d {}^3D_1$	0.004
944.486*	105877.7	66	$5s^25p^2 \ ^3P_2$ - 5p6d $\ ^3D_3$	0.000
950.083	105254.0	23	$5s^25p^2 {}^3P_1 - 5p7s {}^1P_1$	-0.005
950.695*	105186.2	45	$5s^25p^2 {}^3P_0 - 5p6d {}^1P_1$	0.017
954.467	104770.5	10	$5s^25p^2 {}^3P_1 - 5p7s {}^3P_2$	-0.004
957.742*	104412.2	20	$5s^25p^2 {}^3P_1$ - 5p6d 3D_1	-0.006

Continue table (1).						
λ(Å)	ν(cm ⁻¹)	Int.	Classifications	Diff.		
978.786	102167.4	60	$5s^25p^2$ 3P_2 3P_2 3P_2	-0.008		
983.614*	101665.9	10	$5s^25p^2 \ ^3P_1 - 5p6d \ ^3F_2$	0.002		
984.856	101537.7	50	$5s^25p^2 {}^3P_0 - 5p7s {}^3P_1$	0.001		
997.404*	100260.3	70	$5s^25p^2 {}^1D_2 - 5p6d {}^1F_3$	0.000		
997.450*	100255.7	26	$5s^25p^2$ 3P_2 - 5p6d 3F_3	-0.006		
998.557*	100144.5	70	$5s^{2}5p^{2}$ $^{1}D_{2}$ - 5p6d $^{3}P_{2}$	0.000		
1001.435*	99856.7	45	$5s^25p^2 {}^1D_2 - 5p6d {}^3P_1$	-0.002		
1009.449*	99063.9	19	$5s^25p^2 \ ^3P_2$ - 5p6d $\ ^3F_2$	-0.013		
1011.901*	98823.9	76	$5s^25p^2$ 1D_2 - $5p6d$ 3D_2	0.000		
1015.407	98482.7	25	$5s^25p^2 {}^3P_1 - 5p7s {}^3P_1$	-0.001		
1017.636	98267.0	10	$5s^25p^2 \ ^3P_1$ - $5p7s \ ^3P_0$	0.000		
1024.200	97637.2	71	$5s^25p^2 {}^3P_0 - sp^3 {}^3S_1$	-0.001		
1042.98	95878.7	77	$5s^25p^2$ 3P_2 $-5p7s$ 3P_1	0.004		
1043.813*	95802.6*	25	$5s^25p^2 {}^3P_1 - sp^3 {}^1D_2$	-0.009		
1046.923	95518.0	26	$5s^25p^2$ 1D_2 - $5p7s$ 1P_1	0.004		
1052.254	95034.1	30	$5s^25p^2$ 1D_2 - $5p7s$ 3P_2	0.010		
1056.227*	94676.6	54	$5s^25p^2 \ ^1D_2$ - 5p6d 3D_1	-0.001		
1057.279	94582.4	71	$5s^25p^2 {}^3P_1 {} {}_sp^3 {}^3S_1$	-0.006		
1072.990*	93197.5*	27	$5s^25p^2$ 3P_2 $-sp^3$ 1D_2	0.009		
1073.847*	93123.1	27	$5s^25p^2 \ ^1D_2 \ -\ 5p6d \ ^3F_3$	0.005		
1076.783	92869.2	25	$5s^25p^2 {}^1S_0 - sp^3 {}^1P_1$	0.001		
1082.260*	92399.2	40	$5s^25p^2 {}^1D_2$ - $5p6d {}^1P_1$	-0.017		
1087.211	91978.5	62	$5s^25p^2$ 3P_2 - sp^3 3S_1	-0.002		
1087.781*	91930.3	60	$5s^25p^2 {}^1D_2$ - $5p6d {}^3F_2$	0.009		
1094.555	91361.3	67	$5s^25p^2 \ ^3P_0$ - $5p5d \ ^3P_1$	-0.001		
1107.135	90323.2	42	$5s^25p^2 \ ^3P_0 \ - \ 5p5d \ ^1P_1$	0.006		
1126.788	88747.8	35	$5s^25p^2$ 1D_2 - $5p7s$ 3P_1	-0.003		
1126.879*	88740.7	35	$5s^25p^2$ ¹ S $_0$ - 5p6d ³ P ₁	0.002		

λ(Å)	∨ (cm ⁻¹)	Int.	Classifications	Diff.
1132.432	88305.5	50	$5s^25p^2 \ ^3P_1 \ - 5p5d \ ^3P_1$	0.006
1133.939	88188.2	47	$5s^25p^2 {}^3P_1 - sp^3 {}^3P_2$	-0.009
1135.440	88071.6	55	$5s^25p^2 {}^3P_1 - 5p5d {}^3P_0$	0.000
1145.888	87268.6	39	$5s^25p^2$ 3P_1 - $5p5d$ 1P_1	-0.003
1161.888*	86066.8*	61	$5s^25p^2 {}^1D_2 - sp^3 {}^1D_2$	-0.001
1166.827	85702.5	27	$5s^25p^2 \ ^3P_2 \ -5p5d \ ^3P_1$	-0.001
1168.439	85584.3	69	$5s^25p^2 \ ^3P_2 \ - \ sp^3 \ ^3P_2$	-0.005
1168.675	85567.0	35	$5s^25p^2$ 3P_2 - $5p5d$ 1F_3	0.006
1175.172*	85093.9*	71	$5s^25p^2\ ^3P_0$ - $5p5d\ ^3D_1$	0.007
1178.589	84847.2	44	$5s^25p^2 {}^1D_2 - sp^3 {}^3S_1$	-0.005
1196.735*	83560.7	58	$5s^25p^2$ ¹ S $_0$ - 5p6d ³ D ₁	0.003
1205.239	82971.1	76	$5s^25p^2$ 3P_1 - $5p5d$ 3D_2	-0.003
1210.638	82601.1	75	$5s^25p^2 \ ^3P_2$ - $5p5d \ ^3D_3$	-0.008
1218.927	82039.4	68	$5s^25p^2 \ ^3P_1 - 5p5d \ ^3D_1$	-0.004
1230.286*	81281.9	50	$5s^25p^2$ 1S_0 - $5p6d$ 1P_1	0.003
1244.292	80367.0	20	$5s^25p^2 \ ^3P_2$ - $5p5d \ ^3D_2$	0.005
1258.867	79436.5	25	$5s^25p^2$ ³ P $_2$ - 5p5d ³ D $_1$	-0.015
1272.741	78570.6	72	$5s^25p^2 \ ^1D_2 - 5p5d \ ^3P_1$	0.005
1274.670	78451.7	55	$5s^25p^2$ ¹ D ₂ - sp^3 ³ P ₂	0.012
1274.922	78436.2	75	5s ² 5p ² ¹ D ₂ - 5p5d ¹ F ₃	-0.005
1289.768	77533.3	65	5s ² 5p ² ¹ D ₂ - 5p5d ¹ P ₁	0.000
1296.358	77139.2	62	$5s^25p^2$ $^3P_0 - sp^3$ 3P_1	0.007
1317.540	75899.0	83	$5s^25p^2$ ³ P ₀ - 5p6s ¹ P ₁	0.00
1325.054	75468.6	31	$5s^25p^2 \ ^1D_2 - 5p5d \ ^3D_3$	0.007
1327.394	75335.6	54	$5s^25p^2 \ ^3P_1 - 5p5d \ ^3F_2$	0.006
1349.810	74084.5	45	$5s^25p^2 {}^3P_1 - sp^3 {}^3P_1$	-0.003
1354.883	73807.1	68	$5s^25p^2 {}^3P_1 - sp^3 {}^3P_0$	0.000
1356.287	73730.7	44	$5s^{2}5p^{2}$ ¹ S ₀ - sp^{3} ³ S ₁	0.009

۸۲

λ(Å)	ν (cm ⁻¹)	Int.	Classifications	Diff.
1358.009	73637.2	50	$5s^25p^2 {}^3P_1 - 5p6s {}^3P_2$	0.036
1365.451	73235.9	29	$5s^25p^2 \ ^1D_2 - 5p5d \ ^3D_2$	-0.002
1372.808	72843.4	37	$5s^25p^2$ ³ P ₁ - 5p6s ¹ P ₁	0.006
1374.913	72731.9	22	$5s^25p^2$ 3P_2 -5p5d 3F_2	0.009
1383.057	72303.6	45	$5s^{2}5p^{2}$ $^{1}D_{2}$ - $5p5d$ $^{3}D_{1}$	0.009
1384.662	72219.8	72	$5s^25p^2$ 3P_1 - $5p5d$ 1D_2	0.002
1387.565	72068.7	69	$5s^25p^2$ 3P_2 - $5p5d$ 3F_3	0.007
1398.969	71481.2	7	$5s^25p^2 {}^3P^2 - sp^3 {}^3P_1$	-0.008
1407.749	71035.4	68	5s ² 5p ² ³ P ² - 5p6s ³ P ₂	0.005
1436.423	69617.4	74	$5s^25p^2$ ³ P ² - 5p5d ¹ D ₂	-0.022
1438.110	69535.7	72	$5s^25p^2$ $^3P^0 - 5p6s$ 3P_1	0.010
1442.271	69335.1	45	$5s^25p^2 \ ^3P_1 - 5p5d \ ^1D_2$	-0.001
1482.457	67455.6	60	$5s^25p^2 {}^1S_0 - 5p5d {}^3P_1$	-0.006
1498.549	66731.2	68	$5s^25p^2$ - ³ P ₂ - 5p5d ¹ D ₂	0.007
1504.189	66481.0	72	$5s^25p^2$ $^3P_1 - 5p6s$ 3P_1	-0.002
1505.623	66417.7	71	$5s^25p^2$ ¹ S $_0$ - 5p5d ¹ P ₁	0.000
1508.446	66293.4	18	$5s^25p^2 {}^3P_0 - sp^3 {}^3D_1$	-0.027
1513.255	66082.7	72	$5s^25p^2 \ ^3P_1 - 5p6s \ ^3P_0$	0.000
1524.358	65601.4	60	$5s^25p^2 {}^1D_2 - 5p5d {}^3F_2$	-0.012
1539.935	64937.8	71	$5s^25p^2 {}^1D_2 - 5p5d {}^3F_3$	-0.006
1554.018	64349.3	68	$5s^25p^2 {}^1D_2 - sp^3 {}^3P_1$	0.000
1564.813	63905.4	57	$5s^25p^2 {\ }^1D_2$ - $5p6s {\ }^3P_2$	-0.031
1565.511	63876.9	75	$5s^25p^2$ ³ P $_2$ -5p6s ³ P $_1$	0.011
1576.114	63447.2	100	$5s^25p^2 {}^3P_1 {}^-sp^3 {}^3D_2$	0.004
1581.365	63236.5	100	$5s^25p^2 {}^3P_1 {}^-sp^3 {}^3D_1$	0.011
1584.578	63108.3	75	5s ² 5p ² ¹ D ₂ - 5p6s ¹ P ₁	0.009
1600.405	62484.2	72	$5s^25p^2 \ ^1D_2 \ -5p5d \ ^1D_2$	0.016
1606.973	62228.8	100	$5s^{2}5p^{2}$ ³ P ₂ - sp^{3} ³ D ₃	0.003

Continue table (1).					
λ(Å)	ν(cm ⁻¹)	Int.	Classifications	Diff.	
1634.297	61188.4	56	$5s^25p^2$ ¹ S $_0$ - 5p5d ³ D ₁	0.001	
1643.550	60843.9	100	$5s^25p^2$ $^3P_2 - sp^3$ 3D_2	-0.003	
1649.270	60632.9	100	$5s^25p^2 {}^3P_2 - sp^3 {}^3D_1$	0.014	
1677.847	59600.2	64	$5s^25p^2 {}^1D_2 - 5p5d {}^1D_2$	-0.005	
1762.236	56746.1	75	$5s25p2 \ ^{1}D_{2} - 5p6s \ ^{3}P_{1}$	-0.008	
1814.964	55097.5	100	$5s^25p^2 {}^1D_2 - sp^3 {}^3D_3$	-0.003	
1861.771	53712.3	64	$5s^25p^2$ $^1D_2 - sp^3$ 3D_2	0.000	
1869.086	53502.1	33	$5s^25p^2 {}^1D_2 - sp^3 {}^3D_1$	-0.008	
1878.513	53233.6	54	$5s^25p^2$ $^1S_0 - sp^3$ 3P_1	0.003	
1923.325	51993.3	66	$5s^25p^2$ 1S_0 - $5p6s$ 1P_1	-0.009	
2054.717	48668.5	100	$5s^25p^2 {}^3P_1 - sp^3 {}^5S_2$	-0.017	
2170.860	46064.7	100	$5s^25p^2 {}^3P_2 - sp^3 {}^5S_2$	-0.007	
2191.526	45630.3	100	$5s^25p^2$ ¹ S $_0$ - 5p6s ³ P ₁	-0.003	
2359.258	42386.2	10	$5s^25p^2$ ¹ S ₀ - sp^3 ³ D ₁	0.004	
2568.528	38932.8	15	$5s^25p^2$ 1D_2 - sp^3 5S_2	0.016	

Continue table (1).

 $\lambda(\text{\AA})$ = wave length in Angstrom,

 $v (cm^{-1}) = wave number in cm^{-1}$

Int. = Intensity, Diff. = Difference

Parameter	LSF	Accuracy	HF	LSF/HF
$E_{av}(5s5p^3)$	80053	213	78656	1.021
$F^{2}(5p,5p)$	32038	1074	40013	0.801
α_{5p}	-233	-78		
ζ_{5p}	3660	464	3526	1.038
G ¹ (5s,5p)	34147	316	53006	0.644
$E_{av}(5s^25p5d)$	82787	140	83232	0.995
ζ_{5p}	4145	268	3899	1.063
ζ_{5d}	94	(fixed)	93	1.013
F ² (5p,5d)	18802	1611	21218	0.886
G ¹ (5p,5d)	14980	493	20851	0.718
G ³ (5p,5d)	10815	1362	12859	0.841
$E_{av}(5s^25p6d)$	109466	110	109909	0.997
ζ_{5p}	4403	157	4071	1.082
ζ_{6d}	34	(fixed)	34	1.000
F ² (5p,6d)	5422	1051	5953	0.911
G ¹ (5p,6d)	3165	679	4975	0.636
G ³ (5p,6d)	2261	1103	3237	0.699
$E_{av}(5s^25p7d)$	120264	91	12078	0.996
ζ_{5p}	4743	139	4102	1.156
ζ_{7d}	17	(fixed)	17	1.000
F ² (5p,7d)	2202	901	2634	0.836
G ¹ (5p,7d)	1653	615	2141	0.772
G ³ (5p,7d)	922	(fixed)	1418	0.650
$E_{av}(5s^25p6s)$	73944	187	74464	0.994
ζ_{5p}	4220	233	3978	1.061
G ¹ (5p,6s)	2745	881	4141	0.663

 Table (2). Fitted and HFR energy parameteric values (cm-1) and scaling factors for the odd parity configurations of Sb II

Continue table (2).								
Parameter	LSF	Accuracy	Accuracy		HF		LSF/HF	
$E_{av}(5s^25p7s)$	5s²5p7s) 105787		145		106310		0.996	
$\zeta_{5\mathrm{p}}$	4331	195		4082		1.06	51	
G ¹ (5p,7s)	877	758		1101		0.79	07	
$E_{av}(5s^25p8s)$	117893	14		1190	000	0.99	91	
ζ_{5p}	3949	185		4106	5	0.96	52	
G ¹ (5p,8s)	362	(fixed)		482		0.75	50	
Configuration	Parameter	LSF	Accu.		HF		LSF/HF	
5s5p ³ -5s ² 5p5d	R ¹ (5p,5p;5s,5d)	20549	339		30746		0.668	
5s5p ³ -5s ² 5p6d	R ¹ (5p,5p;5s,6d)	10273	170		15371		0.668	
5s5p ³ -5s ² 5p7d	R ¹ (5p,5p;5s,7d)	6739	111		10084		0.668	
5s5p ³ -5s ² 5p6s	R ¹ (5p,5p;5s,6s)	-1544	-25	25 -2309			0.668	
5s5p ³ -5s ² 5p7s	R ¹ (5p,5p;5s,7s)	-926	-15		-1385		0.668	
5s5p ³ -5s ² 5p8s	R ¹ (5p,5p;5s,8s)	-647 -11			-968		0.668	
5s ² 5p5d -5s ² 5p6d	R ⁰ (5p,5d;5p,6d)	0 0			0			
	R ² (5p,5d;5p,6d)	5381	5381 89		8052		0.668	
	R ¹ (5p,5d;6d,5p)	6609	109		9888		0.668	
	R ³ (5p,5d;6d,5p)	4185	69		6262		0.668	
5s ² 5p5d -5s ² 5p7d	R ⁰ (5p,5d;5p,7d)	0	0		0			
	R ² (5p,5d;5p,7d)	3245	54	4855			0.668	
	R ¹ (5p,5d;7d,5p)	4259	70		6372		0.668	
	R ³ (5p,5d;7d,5p)	2713	45		4059		0.668	
5s ² 5p5d -5s ² 5p6s	R ² (5p,5d;5p,6s)	-7308	-121	-1093			0.668	
	R ¹ (5p,5d;6s,5p)	-2985	-49	-4466			0.668	
5s ² 5p5d -5s ² 5p7s	R ² (5p,5d;5p,7s)	-3026	-50 -		-4528		0.668	
	R ¹ (5p,5d;7s,5p)	-1601	-26		-2395		0.668	
5s ² 5p5d -5s ² 5p8s	R ² (5p,5d;5p,8s)	-1899	-31		-2841		0.668	
	R ¹ (5p,5d;8s,5p)	-1071	-18		-1602		0.668	

٨٦

Continue table (2).						
Configuration	Parameter	LSF	Accu.	HF	LSF/HF	
5s ² 5p6d -5s ² 5p7d	R ⁰ (5p,6d;5p,7d)	0	0	0		
	R ² (5p,6d;5p,7d)	2319	38	3469	0.668	
	R ¹ (5p,6d;7d,5p)	2176	36	3256	0.668	
	R ³ (5p,6d;7d,5p)	1428	24	2136	0.668	
5s ² 5p6d -5s ² 5p6s	R ² (5p,6d;5p,6s)	-1057	-17	-1581	0.668	
	R ¹ (5p,6d;6s,5p)	-909	-15	-1360	0.668	
5s ² 5p6d -5s ² 5p7s	R ² (5p,6d;5p,7s)	-2040	-34	-3052	0.668	
	R ¹ (5p,6d;7s,5p)	-579	-10	-866	0.668	
5s ² 5p6d -5s ² 5p8s	5s ² 5p6d -5s ² 5p8s R ² (5p,6d;5p,8s)		(fixed)	-1732	0.800	
	R ¹ (5p,6d;8s,5p)	-454	(fixed)	-605	0.750	
5s ² 5p7d -5s ² 5p6s	R ² (5p,7d;5p,6s)	-271	(fixed)	-362	0.750	
	R ¹ (5p,7d;6s,5p)	-537	(fixed)	-716	0.750	
5s ² 5p7d -5s ² 5p7s	R ² (5p,7d;5p,7s)	-969	(fixed)	-1292	0.750	
	R ¹ (5p,7d;7s,5p)	-367	(fixed)	-489	0.750	
5s ² 5p7d -5s ² 5p8s	R ² (5p,7d;5p,8s)	-972	(fixed)	-1295	0.750	
	R ¹ (5p,7d;8s,5p)	-261	(fixed)	-349	0.750	
5s ² 5p6s -5s ² 5p7s	R ⁰ (5p,6s;5p,7s)	0	(fixed)	0		
	R ¹ (5p,6s;7s,5p)	1541	(fixed)	2054	0.750	
5s ² 5p6s -5s ² 5p8s	R ⁰ (5p,6s;5p,8s)	0	(fixed)	0		
	R ¹ (5p,6s;8s,5p)	997	(fixed)	1329	0.750	
5s²5p7s -5s²5p8s	R ⁰ (5p,7s;5p,8s)	0	(fixed)	0		
	R ¹ (5p,7s;8s,5p)	545	(fixed)	727	0.750	
	σ (mean error) = 268					

E(obs)	E(LSF)	Diff.	LS-composition
<u>J=0</u>			
69137.0	69142.0	-5.0	98% 5s ² 5p6s ³ P
76862.0	77039.0	- 177.0	$63\% 5s5p^3$ (² P) ³ P + 34% $5s^25p5d$ ³ P
91125.0	91100.0	25.0	$65\% 5s^25p5d \qquad {}^3P + 34\% 5s5p^3 ({}^2P) \ {}^3P$
101321.0	101317.0	4.0	100% 5s ² 5p7s ³ P
112357.0n	112617.0	- 260.0	97% 5s ² 5p6d ³ P
	113901.0		99% 5s ² 5p8s ³ P
	122999.0		99% 5s ² 5p7d ³ P
<u>J=1</u>			
66291.0	66369.0	-78.0	$65\% 5s5p^3$ (² D) ³ D + 27% $5s^25p5d$ ³ D
69536.0	69530.0	6.0	74% $5s^25p6s$ ³ P + 25% $5s^25p6s$ ¹ P
75898.0	75887.0	11.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
85094.0	85207.0	- 113.0	$\begin{array}{cccc} 48\% & 5s^25p5d & {}^3D+20\% & 5s5p^3 \ (^2D) & {}^3D+12\% & 5s^25p5d & {}^1P \\ + & 9\% & 5s^25p5d & {}^3P \end{array}$
90323.0	90004.0	319.0	$59\% 5s^2 5p5 d {}^{1}P + \ 16\% 5s^2 5p5 d {}^{3}D + \ 15\% 5s5 p^3 \ ({}^{2}P) \ {}^{1}P$
91360.0	91223.0	137.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
97636.0	97558.0	78.0	$85\% 5s5p^{3}(^{4}S) ^{3}S + 5\% 5s^{2}5p5d ^{1}P$
101531.0	101537.0	-6.0	$70\% 5s^25p7s {}^3P + 29\% 5s^25p7s {}^1P$
105190.0n	104942.0	248.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
107461.0	107642.0	- 181.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
108309.0	108311.0	-2.0	$68\% 5s^25p7s {}^{1}P + 28\% 5s^25p7s {}^{3}P$
112647.0	112525.0	122.0	78% $5s^25p6d$ 3P + 19% $5s^25p6d$ 3D
	113905.0		$61\% 5s^25p8s {}^3P + 30\% 5s^25p8s {}^1P + 4\% 5s^25p6d {}^1P$
114354.0n	114713.0	- 359.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Table (3). The experimental and fitted energy level values (cm⁻¹) and their LS- percentage compositions of odd parity configurations of Sb II

E(obs)	E(LSF)	Diff.	LS-composition
	116796.0		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	120032.0		$67\% 5s^25p8s {}^{1}P + 30\% 5s^25p8s {}^{3}P$
	122965.0		$75\% 5s^25p7d ^3P + 24\% 5s^25p7d ^3D$
	124193.0		$69\% 5s^25p7d {}^1P + \ 16\% \ 5s^25p7d {}^3D + 6\% 5s^25p7d {}^3P$
<u>J=2</u>			
51723.0	51806.0	-83.0	98% 5s5p ³ (⁴ S) ⁵ S
66502.0	66459.0	43.0	$63\% \ 5s5p^3 \ (^2D) \ ^3D \ \ + \ 25\% \ 5s^2 \ 5p5d \ \ ^3D + 6\% \ 5s5p^3 \ (^2P) \ \ ^3P$
72390.0	72386.0	4.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
75275.0	75259.0	16.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
76692.0	76737.0	-45.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
78391.0	78265.0	126.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
86025.0	85817.0	208.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
91243.0	91044.0	199.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
98856.0	99147.0	- 291.0	$62\% 5s5p^{3} (^{2}D) {}^{1}D + 16\% 5s^{2}5p5d {}^{1}D+14\% 5s^{2}5p6d {}^{1}D$
104723.0	104798.0	-75.0	$80\% 5s^2 5p6d {}^3F \ + \ 10\% \ 5s^2 5p6d {}^3D \ + 4\% 5s^2 5p6d {}^1D$
105536.0n	105881.0	- 345.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
107825.0	107826.0	-1.0	99% 5s ² 5p7s ³ P
111617.0n	111687.0	-70.0	$\frac{42\%5s^25p6d}{5s5p^3} (^2D)^1D + 35\% 5s^25p6d \ ^3D + 17\% 5s^25p6d \ ^3F + 4\% 5s5p^3 (^2D)^1D$
112933.0n	112461.0	472.0	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
		46.0	
		20.0	100% 5s ² 5p8s ³ P

Continue Table (3).

E(obs)	E(LSF)	Diff.	LS-composition
		11.0	$57\% 5s^25p7d {}^1D +19\% 5s^25p7d {}^3D$
		339.0	$49\% 5s^25p7d {}^3P + \ 42\% 5s^2 5p7d {}^3D + 7\% 5s^25p7d$
<u>J=3</u>			
67885.0	67643.0	242.0	$72\% 5s5p^{3}(^{2}D) ^{3}D + 26\% 5s^{2}5p5d ^{3}D$
77727.0	77741.0	-14.0	92% 5s ² 5p5d ³ F
88259.0	88245.0	14.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
91226.0	91569.0	- 343.0	$80\% 5s^25p5d {}^{1}F + 12\% 5s^25p5d {}^{3}D$
105916.0n	105580.0	336.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
111529.0n	111606.0	-77.0	$60\% 5s^2 5p6d {}^3D \ + \ 34\% \ 5s^2 5p6d {}^3F$
113150.0n	113137.0		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	116008.0		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	122616.0		$59\% 5s^2 5p7 d {}^3D \ + \ 38\% \ 5s^2 5p7 d {}^3F$
	123534.0		$71\% \ 5s^2 5p7 d {}^1F \ + \ 18\% \ 5s^2 5p7 d {}^3D \ +9\% \ 5s^2 5p7 d {}^3F$
<u>J=4</u>			
81083.0	81226.0	- 143.0	100% 5s ² 5p5d ³ F
	111110.0		99% 5s ² 5p6d ³ F
	122310.0		100% 5s ² 5p7d ³ F

Continue Table (3).

٩.

Revised Analysis of the Spectrum of Singly Ionised Antimony: SbII

configuration	parameter	LSF	Accuracy	HF	LSF/HF
5s ² 5p ²	$E_{av}(5s^2 5p^2)$	9624	121	9251	
	F ² (5p,5p)	35138	643	39878	0.881
	α_{5p}	-100	(fixed)		
	ζ_{5p}	3417	181	3513	0.973
$5p^4$	$E_{av}(5p^4)$	167135	(fixed)	166845	0.999
	F ² (5p,5p)	34159	(fixed)	40187	0.850
	α_{5p}	-200	(fixed)		
	ζ_{5p}	3547	(fixed)	3547	1.000
5s²5p4f	E _{av} (5s ² 5p4f)	111063	(fixed)	110780	0.999
	ζ_{5p}	4096	(fixed)	4096	1.000
	$\zeta_{4\mathrm{f}}$	1	(fixed)	1	1.000
	F ² (5p, 4f)	5224	(fixed)	6146	0.850
	G ² (5p, 4f)	1676	(fixed)	2235	0.750
	G ⁴ (5p, 4f)	1097	(fixed)	1463	0.750
5s ² 5p5f	$E_{av}(5s^2 5p 5f)$	121728	(fixed)	121435	0.999
	ζ_{5p}	4106	(fixed)	4106	1.000
	ζ_{5f}	0	(fixed)	0	0.667
	F ² (5p, 5f)	2516	(fixed)	2960	0.850
	G ² (5p, 5f)	1072	(fixed)	1429	0.750
	G ⁴ (5p, 5f)	707	(fixed)	943	0.750
5s²5p6p	E _{av} (5s ² 5p6p)	90158	80	91291	0.982
	ζ_{5p}	4248	116	4079	1.041
	ζ_{6p}	658	146	594	1.107
	F ² (5p,6p)	7960	557	9499	0.838
	G ⁰ (5p,6p)	1575	99	2560	0.615
	G ² (5p,6p)	1737	(fixed)	2895	0.600
5s ² 5p7p	E _{av} (5s ² 5p7p)	113494	(fixed)	113205	0.999

configuration	parameter	LSF	Accuracy	HF	LSF/HF
	ζ_{5p}	4105	(fixed)	4105	1.000
	ζ _{7p}	235	(fixed)	235	1.000
	F ² (5p,7p)	2914	(fixed)	3429	0.850
	G ⁰ (5p,7p)	617	(fixed)	823	0.750
	G ² (5p,7p)	754	(fixed)	1005	0.750
$5s^25p^2 - 5p^4$	R ¹ (5s,5s;5p,5p)	37394	(fixed)	53420	0.700
$5s^25p^2 - 5s^25p4f$	R ² (5p,5p;5p,4f)	-6175	(fixed)	-8822	0.700
5s ² 5p ² -5s ² 5p5f R ² (5p,5p;5p,5f) -5043		-5043	(fixed)	-7205	0.700
5s ² 5p ² -5s ² 5p6p	R ⁰ (5p,5p;5p,6p)	993	(fixed)	1418	0.700
	R ² (5p,5p;5p,6p)	4484	(fixed)	6406	0.700
5s ² 5p ² -5s ² 5p7p	R ⁰ (5p,5p;5p,7p)	522	(fixed)	745	0.700
	R ² (5p,5p;5p,7p)	2267	(fixed)	3239	0.700
5s ² 5p4f -5s ² 5p5f	R ⁰ (5p,4f;5p,5f)	0	(fixed)	0	
	R ² (5p,4f;5p,5f)	2430	(fixed)	3472	0.700
	R ² (5p,4f;5f,5p)	1247	(fixed)	1781	0.700
	R ⁴ (5p,4f;5f,5p)	819	(fixed)	1170	0.700
5s ² 5p4f -5s ² 5p6p	R ² (5p,4f;5p,6p)	3010	(fixed)	4300	0.700
	R ² (5p,4f;6p,5p)	-441	(fixed)	-630	0.700
5s ² 5p4f -5s ² 5p7p	R ² (5p,4f;5p,7p)	803	(fixed)	1147	0.700
	R ² (5p,4f;7p,5p)	-156	(fixed)	-223	0.700
5s ² 5p5f -5s ² 5p6p	R ² (5p,5f;5p,6p)	1373	(fixed)	1962	0.700
	R ² (5p,5f;6p,5p)	-439	(fixed)	-627	0.700
5s ² 5p5f -5s ² 5p7p	R ² (5p,5f;5p,7p)	1042	(fixed)	1488	0.700
	R ² (5p,5f;7p,5p	2978	(fixed)	4254	0.700
	R ⁰ (5p,6p;7p,5p)	1010	(fixed)	1443	0.700
	R ² (5p,6p;7p,5p)	1181	(fixed)	1688	0.700
		σ(Mean Error)	= 23	3

Continue Table (4).

٩٢

E(obs)	E(LSF)	diff.	LS-composition.		
<u>J=0.0</u>					
0.0	145.0	-145.0	95% $5s^25p^2$ ³ P + 4% $5s^25p^2$ ¹ S		
23905.0	23736.0	169.0	93% $5s^25p^2$ ¹ S + 4% $5s^25p^2$ ³ P		
86495.0	86437.0	58.0	$88\% 5s^25p6p {}^3P + 12\% 5s^25p6p {}^1S$		
96911.0	96994.0	-83.0	$85\% 5s^25p6p {}^{1}S + 12\% 5s^25p6p {}^{3}P$		
	109916.0		$81\% 5s^25p7p \ ^3P + 18\% 5s^25p7p \ ^1S$		
	117693.0		$80\% 5s^25p7p {}^1S \ + \ 19\% \ 5s^25p7p {}^3P$		
	166597.0		94% $5p^4$ ^{3}P + 5% $5p^4$ ^{1}S		
	189198.0		93% $5p^4$ ¹ S + 5% $5p^4$ ³ P		
<u>J=1</u>					
3055.0	2861.0	194.0	99% 5s ² 5p ² ³ P		
83826.0	83912.0	-86.0	$64\% 5s^25p6p {}^3D+33\% 5s^25p6p {}^1P$		
86052.0	86031.0	21.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
90608.0	90671.0	-63.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
93001.0	92906.0	95.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
	108691.0		$72\% 5s^25p7p \ ^3D + 25\% \ 5s^25p7p \ ^1P$		
	109497.0		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
	113843.0		99% 5s ² 5p4f ³ D		
	114973.0		$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
	115707.0		$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
	124124.0		100% 5s ² 5p5f ³ D		
	166007.0		99% 5p ⁴ ³ P		

 Table (5). Observed and Least Squares Fitted (LSF) Energy levels in cm⁻¹ for Even Parity Configurations of Sb II

Continue Table (5).

E(obs)	E(LSF)	diff.	LS-composition.
<u>J=2</u>			
5659.0	5423.0	236.0	$89\% 5s^25p^2 \ ^3P \ + \ 10\% 5s^25p^2 ^1D$
12790.0	13241.0	451.0	89% $5s^25p^2$ ¹ D + 10% $5s^25p^2$ ³ P
86184.0	86167.0	17.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
91718.0	91679.0	39.0	
93853.0	93861.0	-8.0	$73\% 5s^2 5p6p \ ^1D \ + \ 23\% \ 5s^2 5p6p \ ^3P$
	107020.0		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	109610.0		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	113167.0		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	114076.0		55% $5s^25p4f^{-1}D + 43\% 5s^25p4f^{-3}D$
	115343.0		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	116206.0		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	117788.0		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	123823.0		
	124314.0		$59\% 5s^2 5p5f \ ^1D \ + \ 37\% \ 5s25p5f \ ^3D$
	161877.0		93% $5p^4$ 3P + 6% $5p^4$ 1D
	172287.0		93% $5p^4$ ¹ D + 6% $5p^4$ ³ P
<u>J=3</u>			
91583.0	91576.0	7.0	100% 5s ² 5p6p ³ D
	106695.0		$64\% 5s^25p4f \ ^3G + 29\% \ 5s^25p4f \ ^1F \ + \ 5\% \ 5s^25p4f \ ^3F$
	106867.0		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

E(obs)	E(LSF)	diff.	LS-composition.		
	112414.0		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
	113011.0				
	115288.0		98% 5s ² 5p7p ³ D		
	117478.0		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
	117649.0		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
	123450.0		$47\% \ 5s^25p5f \ {}^1F \ + \ 27\% \ 5s^25p5f \ {}^3G$		
	123731.0		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
<u>J=4</u>	106982.0				
	112559.0				
	113655.0		$70\% 5s^2 5p4f \ ^1 G \ + \ 27\% \ 5s^2 5p4f \ ^3 G$		
	117692.0		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
	123526.0		$67\% 5s^25p5f \ ^3F \ + \ 31\% \ 5s^25p5f \ \ ^3G$		
	124116.0		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
<u>J=5</u>	113129.0		100% 5s ² 5p4f ³ G		
	123739.0		100% 5s ² 5p5f ³ G		

Continue Table (5).

Conclusion

The analysis is considerably extended to complete the configuration 5p6d, for the first time. All other reported levels of $5s5p^3$, 5p5d, 5p6s and 5p7s were also confirmed. The three transitions without good intensities at 95802.6, 93197.5 and 86066.8 cm^{-1} have been identified to establish the missing $5s5p^3$ 1D_2 level. Almost for all the reported levels of 5p6p, five of the 5p7p and two of the 5p4f, I have tried to interpret these levels theoretically

Acknowledgement

By the name of Allah I feel so gratefull of His blessings, I finally completed this paper. I am thankfull to the Natural sciences and Engineering Research Council of Canada (NSERC) for the financial assistance which made my stay possible in Antigonish laboratory in 2002. I wish to thank the Aligarh Muslim University for their continued support to the research program on Atomic Spectra. I am very much thankful to Deanship of Educational Services for providing all facilities in Qassim University, KSA. I would like to express my humble gratitude to Prof. Rahimullah khan and Dr. Tauheed Ahmad of Aligarh Muslim University (India) for his constant guidance that helped me to complete this paper.

References

- [1] Y.N. Joshi, A. Tauheed and I.G. Davison, Canad. J. Phys. 70, 740 (1992)
- [2] A. Tauheed, Y.N Joshi, and V. Kaufman, J.Phys. B: At. Mol. Opt. Phys. 24, 3701 (9191).
- [3] E.H Pinnington, R.N.Gosselin, Q. Ji, J.A. Kernahan and B.Guo; Physica Scripta. 46, 40 (1992).
- [4] A. Tauheed and Y.N Joshi, Physica Scripta. 46, 403 (1992).
- [5] A.Tauheed and Y.N Joshi, Physica Scripta. 46, 403 (1992)
- [6] R.R. Churilov, and Y.N Joshi, Phys. Scr. 58, 441 (1998)
- [7] R. J Lang and E. H. Vestine, Phys. Rev .42, 233 (1932)
- [8] S. G Krishnamurty, Indian J. Phys. 10, 83 (1936)
- [9] K.Murakawan and S. Suwa, Reports Inst. Sci Tech Tokyo university 1, 121 (1947)
- [10] C.E Moore, Atomic energy levels, 3, N.B.S. Circular 467 (U.S. Government Printing Bureau, Washington, D.C) 1957
- B. Arcimowicz, Y.N Joshi and V. Kaufman, Canad. J. Phys. 67, 572 (1989) 12 Tazeen Rana, A. Tauheed and Y.N. Joshi, Physics Scripta. Vol 63,108-112, (2001)