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Abstract. This investigation is devoted to the construction of a robot trajectory using a ruled surface.
Transition relations among surface trihedron, tool trihedron, generator trihedron, natural trihedron and
also Darboux vectors for each trihedron are given. Then, the curvature theory of ruled surface under
investigation is applied to determine the differential properties of a robot end effector motion. This
information is then used to characterize the linear motion of the tool center point and the angular motion
of the tool frame of the robot end effector for the trajectory planning. The differential motion properties
of the tool frame and the TCP point, based on the curvature theory of a ruled surface, using the
relationships between the four frames of reference are studied.
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1. Introduction
Here, we present the relation between ruled surface and robot trajectory [5-8].

The motion of robot end-effector is referred to as the robot trajectory. A robot
trajectory consists of:

(i) A sequence of positions, velocities, accelerations of a fixed point in the
end-effector.

(ii) A sequence of orientations, angular velocities and accelerations of the
end-effector.

The fixed point in the end-effector will be referred to as the tool center point
and is denoted by TCP. The orientation of the end-effector is best described by a
coordinate frame attached to the end-effector, referred to as the tool frame.

The location and orientation of the robot end-effector are completely
described using the tool frame and the tool center point (TCP). The tool frame

consists of three unit vectors; namely, the orientation vector O, the approach vector

A and the normal vector N . The tool center point is chosen to be the origin of the
tool frame.

The robot trajectory may be represented using a ruled surface. Each of the
three unit vectors of the tool frame generates a ruled surface while the three ruled
surfaces share a common direcrix traced (trajectory) by the TCP. It is not necessary
to use all three ruled surfaces to represent a robot trajectory; in fact, one ruled
surface will suffice. As shown in Figure 2 ,the ruled surface generated by the

approach vector A is chosen here to represent the trajectory. We may note,

however, that the orientation of other vectors, O and N , are not specified yet.

Theoretically, this is because a robot end-effector motion, in general, has six degrees
of freedom in space while a ruled surface provides only five independent
parameters. Therefore, a robot trajectory may be completely described by adding
one parameter to specify the orientation of the two vectors. The additional parameter
is referred to, in this study, as the spin angle and is denoted by 77 . The spin angle is

measured from the surface normal vector S, of the ruled surface to the normal

vector N . The ruled surface and the spin angle, which completely describes a robot
trajectory, respectively, are

X(s,v) = a(s) +VR(s),n =n(s) (1.1)
where ¢ is the directrix, v is a real-value parameter, and R is the
ruling(see figure 1) [1-4].
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Figure (1). The ruled surface X

We choose the approach vector A , to be the ruling. Any one of the three

vectors in the tool frame could be chosen as the ruling and the spin angle describes
the orientation of the other two vectors in cyclic order.

Each vector of tool frame in the end-effector defines its own ruled surface
while robot moves. The path of tool center point is the directrix and A is the ruling.

As (S) is a curve and R(S) is straight line, let us consider the ruled surface
(1.2).

The normalized parameter s may be based on the directrix & or on the
ruling R as in the following respectively

®
_ [, da(e)
=1 2E9) 4, 1.2
s(p) O| do |de 1.2)
®
R
s =1 | 9R@) 4, w3
0 do

Through out this paper we use the normalized parameter as in (1.3) [16-19].

2. Reference Frames
In what follows, we construct the differential formulas of the following frames:
(i) The tool frame (O, A,N)
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(i) The surface frame (A,S,,S,)
(i) The generator trihedron (r,t",t)

(iv)The natural trihedron (t",n",b").

These frames are essential in the study of the motion of the end-effector.

Therefore we present the construction of these frames in a brief account [9-14].
2.1 Surface frame

To determined the orientation of the tool frame relative to the ruled surface
X = X(v,S), we define a surface frame at the TCP as shown in Figure 2.

Figure 2. The orientation of the robot end-effector through the surface X.

The surface frame is defined by three orthogonal unit vectors, the approach
vector A , the surface normal vector S, and their binormal vector S, . The

surface normal vector is determined using the definition of the normal vector field to
the ruled surface X as the following

X, A X
§n = =V’ =S (21)
| X, A X
Thus, the surface binormal vector is given as
§b = §n /\A (2-2)

where X, :O_X’ X, =8—X.
ov 0s
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2.2 Frenet frame
The Frenet frame along the directrix « is defined by three orthogonal unit
vectors, namely; the tangent vector t, the normal vector N and the binormal vector

b as the following

o
1

t/\n'=i (2.3)
7 ds '

where K =|t'| is the curvature of the directrix o =a(S) (natural
parametrization).

2.3 Generator trihedron

Generator trihedron moves along the striction curve and is used to study the
positional and angular variation of ruled surface X . The generator trihedron is
defined by three orthogonal unit vector, namely; the generator vector I, the central

normal vector t_* and the central tangent vector K. Since the ruling is not
necessarily a unit vector, the generator vector is defined as

\m

r= (2.4)

Without loos of generality, we take R’ as a unite vector and the central
normal vector E is defined as

|70

t' =R (2.5)

The central tangent vector is given as

t. =rat’ (2.6)

c —

The striction curve 8= f(S) of the ruled surface (1.1) is defined as [2-4]

B(8) = a(s) = u(S)R(S) 2.7)
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where g is a real valued parameter. The distance from the striction curve to
the directrix « along the ruling is 4R where R =|R|= const. Thus, from the
definition of the striction curve (< £, R">=0) we have

u==<a R~ |R'=1. 2.9)

Differentiating Equation (2.7) gives first order positional variation of the
striction point é of the ruled surface (1.1) which can be expressed in the generator

trinedron as in the following ,

p=Tr+At, 2.9)

where
1 1 l 1 ! A
I'==—<a' ,R>-—uR,A==[c',R,R'] (2.10)
R R
From the motion of the generator trihedron and the striction curve one can
obtain the differential motion of the end-effector in a simple and systematic manner.

The first-order angular variation of the generator trihedron can be determined in the
following matrix equation

r 0 1 0Yr r
dit]|_1/-1 0 |t t (2.11)
— =— =U, A
dS tc R O -7 O tc tc
where the invariant
y=<R",(RAR)>=[R",R,R] 2.12)

is called the geodesic curvature of the ruled surface X .

Using the relation between the vector product and the product of matrices,
one can obtain

U =lr+£tC
R™ R~

r

(2.13)

which is called the Darboux vector of (axis of rotation) the generator
trihedron.
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2.4 Darboux frame for the ruled surface X
The Darboux frame for a curve X (S,V(S)) on the ruled surface X is

defined by three orthogonal unit vectors, namely; the tangent vector T of the curve,

the normal vector S on the surface X and the geodesic vector N such that

I:d—l:'g+vf+ r,

v
S R™ (2.14)

X. A X 1 *
Sy =ﬁ=ﬁ((ﬂ—V| Rt —At),
| X, A X (2.15)

ng=TAS, :é((u—VI RDEAL) - AEAL +v(u=VIRDr+
V(u=VIR]) - VA,
IR| IR| (2.16)

where H:\/(,u—v| R[)?+A® and V=V(s).

2.5 Central normal surface and the natural trihedron

The natural trihedron is used to study the angular and positional variation of
the central normal surface. As the generator trihedron moves along the striction

curve = f(S), the central normal vector generates another ruled surface called

the central normal surface and is denoted by X . The central normal surface, is
defined as

X (8:¥) = B(5)+E'(9) o1

where 8= [3(S) is the position vector of the striction curve of the original

ruled surface X , and v is a real parameter (see figure 3).
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Figure (3). The central normal surface Xt

The location of the striction curve of the central normal surface X ; relative
to the striction curve £ = S(S) of the ruled surface X is given by

B.(8)=p()—py t(s)

(2.18)
where
<p -
w© LT,
RIS (2.19)
From equation (2.9) and (2.11) we have
-R(TC'+A .
tr(8) = % Vy # E
tr (2.20)

The natural trihedron is defined by three orthogonal unit vectors, namely; the
central normal vector t_* the principal normal vector n_* and the binormal vector

E as shown in figure 4 such that

t'=R,n" ==t"'b =t An’

K (2.21)




Geometric Visualization of a Robot End-Effector ... V.o

where & =[t"].

Ry

Figure (4). The central mormal surface Xt and its reference: fames.

The Frenet frame for the curve = £(S) on the Central normal surface X; is
defined through the tangent vector t,, the normal vector N, and the binormal
vector b, where

tr= p=t-u|R|r—ut,
i “o o 4 .
n,= L=kn+ (L uRpr—2ut -t ko=t 222)
By = o=kn (IRI #RDr=2ut R It |
b = n;At;.

2.6 Darboux frame for the central normal surface X,

The Darboux frame for a curve X (S,V(S)) on the ruled surface X; is
defined by three orthogonal unit vectors, namely; the tangent vector T, the normal
vector S,; and the geodesic vector N7 such that
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To= oo Yy as By,
ds IR IR|
1 v YU
Sur= (oDt +(A+ 7)),
" TTIR IR (2.23)
.
ng= T:ASy
1 A v y0
= =[] [t +v(—-Dr-v(A+- )]
HH IR IR

T

v v
where HT =\/(ﬁ—F)2+(A+|7/?| 2.

Let the rotation angle o between the vectors ﬁ and b_*,thus we have

t.=Ccosp n +sinp b (2.24)
Equation (2.24) can be written in the matrix form as
r 0 -sinp cosp)t”
| |1 o0 0 [n"
t. 10 cosp sinp b"
(2.25)
The inverse of the linear transformation (2.25) is given as
t 0 1 0\r
n"|_|-sinp 0 cosp |t
b'| | cosp 0 sinp|t,
(2.26)
From equation (2.11) and (2.26) we obtain
*I 1 * * -
U= (-r+st) = n=x"(-sinp r+cosp t).  (227)

R
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From this equality we have

1 /4
—, C0Sp=——.
K » R

K (2.28)

sinp =

Then the geodesic curvature of the ruled surface X can be written as

y = cotp. (2.29)

From equation (2.28) and equation (2.13) we get

r 0 1 0 Y\r r
ditt] 1/-1 0 cotp|t’ t
—_ = :Ur/\
ds{t.| R| 0 —cotp O |t, t,
(2.30)
From equation (2.22) we have
— HYJ
4 (S8) =—Rsin” p(I" + Acotp) (2:31)

Also by equation (2.28), one can obtain the curvature k™ of the ruled surface
X as in the following

= J1+9° _ 1

R Rsinp

(2.32)

The first-order angular variation of natural trinedron may be expressed in the
matrix form as

t) (0 « 0yt r
gl o el
ds| b 0 < o|b b

(2.33)

where U, is the Darboux vector of the natural trinedron and is given by

TR (2.34)
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From equation (2.25) and (2.28) we have

r 0 -1 y\t
t| 1 |R< 0 Ofn
t. Rx'| O y 1b_*'

(2.35)

From equation (2.20),(2.29) and (2.31) one can see that the first order positional
variation of the striction curve /3 of central normal surface X is given as

where

AT :u.

Ty = # 1+ y?
v

(2.37)

The curvature K~ and the torsion 7~ of the ruled surface X are given
respectively as

2 <(RAR),(RAR") -

(<R,R">)’ (2.38)
= [R",R",R"]
< (R'AR"),(R'AR") > (2.39)

Observe that the Darboux vector U, of the generator trihedron and the
Darboux vector U, of the natural trihedron, describe the angular motion of the ruled

surface X and the central normal surface X , respectively. Therefor, the Darboux
vector may be considered as the angular velocity where as the positional variation
P of the striction curve may be considered as the linear velocity.
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The curvature K; , geodesic curvature y; and the torsion 7, of the central

normal surface X, are given respectively from

2 _ < (AL, (AL -
T = %1 \3 !
t't">) (2.40)

== ) A =1, (241)

_ ]
<AL (EALT) - (2.42)

I

Remark 2.1 The functions, A; and I7 and K and r*, play the same role as the

curvature function of the central normal surface XT .

3. Relationship between the Frames of Reference
Here, we give the orientation of the surface frame relative to the tool frame and the
generator trihedron. For this purpose, let ¢ be the angle between the vectors S,

and O, i.e,

<S,,0>=cos¢g

@1
which leads to the following
O=cosg S,+sing S,
N=0AA=-sing S, +cos¢ S,. (3.2)

These relations can be summarized in the non singular linear transformation

A 1 0 0 YA
O| |0 cosg sing|S,
N 0 -—sing cosg| S,

33)
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Similarly, let i be the angle between the vectors S, and t, thus we have

AY (1 0 0 Yr
S,| |0 cosy siny |t
S, | |0 —siny cosy |t |
(34)
From the equations (3.4) and (3.2) we get
A 1 0 0 r
O| |0 cosf sing |t
N 0 -sind cosd | t,
(3.5
where 0 =@+ .
The inverse of this linear transformation is given as
ry (1 0 0 YA
t'| |0 cos® -sind | O
t, “10 sin@ cosd N
(3.6)
where @, referred as spin angle, describes the orientation of the end-effector.
Substituting the partial derivatives of Equation (2.1) into (2.4) we have
t. — At t" - At
S,=fF——=, 5,=5,A0=f=—"¢
VU +HA Mo+ A (37)
From the equations (3.4),(3.7) and (3.8) we get
—A . -
cosy = ———, snnw:%, ¥ =tan l(Tﬂ)-

2 2
M+ NA Ho+A (38)
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4. Differential Properties of the Robot End Effector Motion [15-20]

The motion of the robot end effector is described by the angular motion of the tool
frame and the linear motion of the TCP. In this section, the differential motion

properties of the tool frame and TCP of first and second order , i.e., &’ and " are
studied.

Since the directrix ¢ is the locus of the TCP and from equation (2.9) we obtain
a'(s) = f+u'R+ ut. 4.1)
Using Eq(2.10) we get
&' (8) = T+ uR)r +ut” + AL, 42)
From Eq(3.6) we have
a'(s) = (T + 1R)A+(ucosf+ Asin@)O — (1sind — Acosd)N (4.3)

The first order angular variation of the tool frame is determined from Eq(3.5) as in
the following

A 0 1 0 r
d|O| 1| 0 -ORsind QRcosd |t
ds| N | R|sind —ORcosd QRsing t.
(4.4)
where Q=9'+%.From Eq(3.6) we have
A 0 cosf® -—sing\ A
d|O]|_ 1|-cos® 0 QR | O
ds|N| R| sind OR 0 [N
(4.5)

The 1St order angular variation of the tool frame (4.5) can be written as

o
[Z 10 I»
[Z 10 I>

(4.6)
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where

u,= QA+%(Sin 60 +cosON)

4.7)
is reffered to as the Darboux vector of the tool frame.
From Eq(3.5) we get
U,=Qr+ itc'
R (4.8)
Differentiate Eq(4.2) we get
r Ay«
a"(s)= (C'+ Ry + (= +2p + 2D + (A + 2D
- R R R "™ R (4.9)

From Eq(3.6), the 2nd derivative ¢ can be expressed interms of the tool frame
as the following

@' (s)= (T + 1'R —%)A+[(A’+%/)sin6—(%+2,u’+%7)00549]9+
N. (4.10)

From Eq(4.8) we obtain

(4.11)

It is well-known that the robot trajectory planning is based on time-dependent
properties, e.g., velocity , acceleration, angular velocity, and angular acceleration, of
robot end effector motion. Therefor the time-dependent motion properties of the end
effector can be determined by applying the chain role to the differential motion
properties determined in (4.2).

The velocity V and acceleration @ of TCP, and angular velocity W and
acceleration .9 of the end effector are determined, respectively as

V =a's =35(('+ R)A+(ucos@+ Asin@)O — (sind— AcosO)N), (4.12)
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a=a'§+a"st =[S0+ uR)+ 8 (T + wR-T)]A
+['s'(ﬂcose+Asine)+s'2[(A'+LR7)sin9—(%+ 2y'+%7) cosoT]0

+[5(Acosd — 1sing) + s'z[(%+ 2,u’+%7)sin9— (A'+%7) cosOlIN  (413)

v_v=903=s'<szz+%tc),

(4.14)
o ' as 2~/ l o .2 9,
G=w=U _§+U 's*=(8Q+s°Q)r+(=5+3"—)t,
R R (4.15)
d o .
where . = E (differentiation with respect to time).
5. Application
Consider the ruled surface

X(s,v) = a(s)+VR(s) (5.1)

where the directrix « concides with the striction curve £ and «a s

0((3):(_—1Sini iCOSi i) and the generator R s
- V2o 22 22
S S

R(s) = (cos—,sin ,0) with <R,R>=1. The generator trihedron
R(s) = V22 ) T
(r,t",t,) is given as the following
S . S
r = (cos—,sin—,0
r=( V22 )
* _1 - S 1
=R'= (—=sin—=,—=c0s—,0)
LR B 2

1,
V27 (5.2)
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From Eq(2.9), (2.11), (2.13), (2.39) and (2.40) it is easy to see the invariants
of the end-effectors are given as the following

r="1ta=1
2 2
7:0,,U:0

K*:l,r*:O,,uT =1

ki =2,7; =0,;/T=O,AT=_71,FT=O. 63

Remark 5.1 The invariants of the robot end effectors under consideration are
constants.

The natural trihedron is given in the following form

t"=( 1smii S
R ffl f
ve6 1 o 5% 750
b;:(0,0,—), constant vector
22 (5.4)

The central normal surface X ; is given as

COS—,

X, (50) = frrot = (sin-Go.00s 5By W sin- s cos

From the definition of the striction curve [ (S) of the central normal surface

0) (6.5

S
X;(8) itis easy to see that S (S) = (O’O’E) is a straight line in the directrix

of b" and t,.

The Darboux vector of the generator trihedron is

=(0,0,— constant vector

3,
V2 (56)

The Darboux vector of natural trihedron is

=(0,0, constant vector

)
f (.7)
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From Eq(3.19) and (5.3) we have tany =0, iew =0 and ' =0.

Since the spin angle ¢ between the tool frame and the surface normal zero, i.e.,
$p=0->¢'=0,0=y,0'=y', 2" =0, then

0= (_—1sini _—1cosi 0)

RN RN RN R 69)
1

N =(0,0,—=), constant vector
V2 (5.9)

S = (isn‘]i __1005i 0)
N2 222
S, = (0,0,_—1),constant vector

V2 (5.10)

The first and second order positional variation of the TCP can be expressed
in the tool frame as

1 1
a'=--A-N
2 2 (5.11)
1

a"=-0

2 (5.12)
The Darboux vector U  of the tool frame is a constant vector given as

!o :_N:Qr;and!ozo (5.13)

The linear velocity and acceleration are given as

!:_EA_EN,

(5.14)
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The angular velocity W and acceleration ¢ of the end effector are given by

(5.15)

emark 5.2 The Darboux vectors of the three frames attached to the robot end
effector are constants and parallel to N .

Conclusion
From the curvature theory of ruled surface, one can see that the motion of the
robot end-effector can be represented by the union of ruled surface X and its

associated central normal surface X; (figure 5). The configuration space consists
of X U X; and the different frames with the orientation of the motion through the
Darboux frames especially UO . The frame on configuration space is given in figure
6. The analytical representation is given through the frames ([,E,t_c), t',n,b)
, (AJO,N), (U,,U,,U,) and the spin angle attached to the ruled surfaces X

and X, . From (5.15) it follows that the angular motion parallel to the constant
Darboux vector U, = N .

Figure (5). The configuration space X U X+ of the robot end effector motion.
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Figure (6). The different frames in the configuaration space X U Xy of the motion.
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