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Abstract. Shape-memory alloys (SMAs) are unique class of metal alloys that after a large deformation
can, on heating, recover their original shape. Its non-linear behavior and thermal dependence attracted
many researchers, engineers and designers to choose the right material for proper applications in many
fields of industry. The most commonly used material is nitinol (NiTi). Nitinol is
highly biocompatible and has suitable properties for use in orthopaedic implants. Due to Nitinol's unique
properties it has seen a large demand for use in less invasive medical devices. Nitinol tubing is commonly
used in catheters, stents, superelastic needles and in devices for reconnecting the intestine after removing
the pathology. Nitinol has been increasingly utilized in a variety of medical devices, actuators and robotic
industries, nuclear reactors, in radiation environment, nuclear industry and other applications. During
service in nuclear reactors, nitinol is exposed to many types of radiations which may affect its properties
and structure. A comprehensive collection of previous reports on the effects of ion implantation of
different energetic massive species: He*, B*, C*, N*, Ar*, Xe*, Ti*2, Ni*?, Cu*? and Au*® on nitinol
properties are given. | hope this will be a useful and helpful guide to researchers and engineers working in
this field.
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1. Introduction

Shape memory alloys (SMAs) are metals that “remember” their original shapes.
SMAs are useful in manufacturing endovascular stents, biomedical and surgical
devices [1-8], robotic actuators and fastening mechanisms [9-21]. The shape-
memory phenomenon, allows devices made of nitinol (NiTi) to assume one shape
when cold and another when heated.

Nitinol exhibits the highest efficiency among other shape memory alloys
such as: gold-cadmium, indium-thallium, and copper-zinc. At temperatures below
the transition temperature Tc, it has excellent corrosion resistance, nonmagnetic
nature, low density and high fatigue strength. TiNi shape memory alloys (SMAs) of
near equiatomic composition are of technological importance. Nitinol is highly
biocompatible and has properties suitable for use in orthopaedic implants. Due to
Nitinol's unique properties, it has seen a large demand for use in less invasive
medical devices. Nitinol tubing is commonly used in catheters, stents, superelastic
needles and in devices for reconnecting the intestine after removing the pathology.
There is an interest in Ni-rich NiTi alloys because the phase transformation
temperatures can be controlled through heat treatment [22, 23].

Many researchers had studied the martensitic and austenitic transformations in
nitinol [24-31] using different techniques: differential scanning calorimetry (DSC),
positron annihilation technology (PAT) and transmission electron microscopy (TEM),
X-ray diffraction (XRD) and neutron diffraction (ND). They found that increasing the
stress would also increase the martensitic to austenic (MA) transformation
temperatures  As and Ar (As start and Ar finish) [29]. As and Ar decrease with
increasing annealing temperature due to the reduction in the dislocation density and
internal stress and agrees well with the result of Miller et al. [25].

He et al. [30] studied the influence of both stress and material state on the
phase transformation, and put a phase diagram to describe the SMA response and for
subsequent modeling and predictions.

The B19' (cubic) of NiTi is unstable and cannot store shape memory at the
atomic level [31], however, the B19' structure can be stabilized by a wide range of
applied or residual stresses. In TiNi alloy thin films [32] the activation energy of
TiNi alloy increases linearly with pressure and Ti-concentration in a different
manner than the bulk TiNi alloy.

More details of all aspects of SMAs from fundamentals to applications are
available in some books [33-36]. Application of SMA in biomedical industry and
related fields is found in Refs. [37, 38].

Irradiation of matter with energetic particles can induce disordering and
amorphization in certain intermetallic compounds [39-43]. Brimhall [44] and
Maziaz et al. [45] showed that the crystallization temperature of amorphous alloys is
significantly lowered by heavy ion and electron irradiation. Kinoshita [46] studied
the electron irradiation-induced transformation in alloys and ceramics. Precipitate-
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free zones (PFZs) were observed in the thinner part of the foil or in the near-surface
regions when the irradiation temperature was in the range 600-700 °C [47]. At
higher temperature of 800 °C, precipitation took place preferentially at the foil
surfaces. Electron irradiation affects the sink efficiency of the foil surfaces.

Effects of electron irradiation on Nitinol are available in Refs. [44-50],
proton irradiation effects are found in Refs. [51-61], and neutron irradiation effects
are found in Refs. [62-68].

Nanocrystalline (NC) materials can exhibit enhanced irradiation resistance.
Fully dense NC TiNi alloys can be produced by severe plastic deformation (SPD)
and subsequent annealing [69]. NC TiNi with a long-range ordered B2-phase (cubic)
is an attractive material to study irradiation with energetic particles and its effects on
the stability of the ordered super lattice. Ordered alloys allow the use of averaging
techniques, such as XRD to determine irradiation effects by following disordering or
amorphization instead of the time-consuming microscopic methods needed to study
individual defects, such as dislocation loops, in regular metals and alloys.

When NC TiNi and NC Cu-0.5 % Al,Os alloys, produced by SPD- method,
were irradiated by high proton doses no defects were observed [70]. The damage,
expressed in density of point defect clusters observed by TEM, decreased by a factor
of 3-4 when the grain size was reduced from 100 nm to 40 nm, and no defects were
found when the grain size was less than 20 nm [71]; which confirms that NC TiNi
exhibits radiation resistance.

2. Implantation Effects of Inert Gas lons
(He*, Ar* and Xe*) on NiTi Alloys Properties

Irradiation of NiTi alloy thin films (2-4 um) by very low doses of He*
(atomic weight 4.0026) even below 0.01 dpa, affected the premartensitic
transformation; and the characteristic temperatures were significantly lowered [71].
The two-way shape memory effect present in the film before irradiation was still
observed even after a damage of 0.01 dpa [72].

Fully dense NC Tisg4Nisos (23-31nm) and coarse grained (CG) Tisg.4Nisos
alloys were subjected to the same damage dose of 1.5 MeV Ar* (atomic weight
39.948) at room temperature with ion flux of 6.4 x 10'?ions cm? s [73]. NC TiNi
retained the long-range order while the coarse-grained counterpart was amorphous.
The lattice of NC TiNi still exhibits a substantial degree of long range order, while
the CG structure shows considerable amorphization at a quarter of the damage dose.
Internal pores are efficient sinks for the ion-induced defects. It is concluded that
bulk crystalline compacts with residual porosity exhibit considerable tolerance to
irradiation. Fully dense NC TiNi exhibit enhanced ion irradiation resistance which
provides an evidence for the important role of the internal interfaces to reduce or
even prevent the accommodation of radiation damage [73]. The total ion damage
necessary to initiate the long-range disordering of bulk NC TiNi alloy is at least one
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order of magnitude higher as compared to CG TiNi, which is already partially
amorphized at a dose of 0.4 dpa.

Irradiation of TiNiCu SMA by 400 keV Xe* (atomic weight 131.293) caused
amorphization at ~ 0.4 dpa and the recrystallization started when annealed at 277 °C
and basically finished at 750 °C [74].

3. Implantation Effects of B*, C*, N*, Ti*2, Ni*? and Au*® lons
on NiTi Alloys Properties

Heavy ion irradiation alters the crystallization mode by causing direct
transformation to the final equilibrium phase as opposed to intermediate metastable
phase formation during thermal annealing or electron irradiation. The equilibrium
phase is believed to nucleate directly in the displacement cascades, which only form
during heavy ion bombardment. Binary and multi-element amorphous alloys showed
this type of response to irradiation. Radiation enhanced diffusion processes in the
amorphous state can explain the increased crystallization kinetics during irradiation.

Boron (B*) and nitrogen (N*) ions (atomic weights 10.810, 14.007,
respectively) implantation were used to improve the mechanical properties of NiTi
alloys and study their effects on the chemical and physical properties [75]. Low
nitrogen and boron implantation doses have no important effects on hardness (H)
and elastic modulus (E), Table 1 and Fig. 1, where R is a dimensionless parameter,
can be directly deduced from the load — displacement curve, defined as:

R (%) = 100 (hr- hr/ hr) Q)

Where ht and hg are the total indentation depth and the depth of the residual
imprint, respectively.
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Figure (1). Concentration distribution of boron and nitrogen atoms in NiTi alloy simulated with
TRIM after implantation at E = 150 keV, Reference [76].

Table (1). Implantation parameters of the investigated samples and the corresponding values of
mechanical properties deduced from load-displacement curves obtained with nano-
indentation, Cnax is the maximal concentration of the implanted atoms, R is the elastic
recovery, Reference [76].

Samples

Bl
B2
B3
N1
N2
N3

Dose

(at.cm?)

1.0x10%
5.0x10%
1.0x10Y
1.0x10%
5.0x10%
1.0x10Y

Crnax
(at.%)
0.64
3.10
6.01
0.94
4.53
8.66

Elastic
recovery

R (%)
313
356
33.1
333
337
34.9

Hardness
H (GPa)
7.00
7.25
7.70
6.30
7.55
7.30

Elastic modulus
E (GPa)

103

95

110

91

104

102

The hardness profiles exhibit characteristics evolutions with applied load
Pmax, already observed after B*, N*, and C* (atomic weight 12.011) ion implantation
into titanium alloys, Fig. 2 [75,76]. The hardness and elastic modulus values had
been determined from characteristic load — displacement curves Fig. 2a. Figure 2b
represents the evolution of hardness (H) and elastic modulus (E) as a function of
penetration depth for the unimplanted NiTi alloy. Pelletier et al. [76] noted different
evolutions of chemical and structural transformations as a function of ion species
and implanted dose.
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Figure (2). Mechanical properties of the used superelastic NiTi alloy, with (a) the characteristic
load-displacement curves and (b) evolutions of hardness and elastic modulus profiles,
measured with nanoindentation tests on unimplanted NiTi sample, Reference [76].

Grazing incidence X-ray diffraction (GIXRD) measurements, Fig. 3 [76],
showed a significant increase of the mechanical properties due to the formation of a
partial amorphous layer around the ion projected. The formation of this amorphous
layer seems to be independent of the implanted species and dose. In NiTi alloy
partial restoration phenomenon and recrystallization may happen. It is expect [76]
that wear resistance of NiTi surface, and the endodontic instruments may be also
enhanced by boron or nitrogen implantation. Figure 3a shows that the B2 austenite
phase, for N* implantation, is always present at each dose and also shows an
important shoulder at small 20 angles on the (110) main lines of austenite for the
specimen implanted at 5 x 10'® N* ¢cm?, where no B19’ martensitic phase was
detected.
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Figure (3). GIXRD patterns at fixed angle a; = 1° showing the influence of nitrogen (a) and boron
(b) implanted doses, Reference [76].

The peak broadening was attributed to partial amorphization of initial B2
austenitic phase, rather than implanted N*. Figure 3b, for B* implantation, shows the
main peaks corresponding to the B2 austenite are still present and the relative
intensities Im/la, with Iy and la the integrated intensities of the martensitic and
austenitic phases, respectively, decreases with the implanted dose showing a strong
decrease of the B19’ marensitic concentration in the implanted layer with increasing
boron dose. B* implantation into nitinol alloy improved the surface hardness of the
alloy [76]; boron-implanted and unimplanted (pure) nitinol alloys have surface
hardness of 7.6 £ 0.2 and 3.2 + 0.2 GPa, respectively, at the nano indentation depth
of 0.05 pm. The hardness of the ion-beam-modificated nitinol alloy exceeds the
surface hardness of stainless steel, Table 2 [76].
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Table (2). Comparison between physical and mechanical properties of NiTi alloy and stainless steel,
Reference [76].

Recovered Ultimate Hardness Elastic Density Material
elongation Tensile stress H (GPa) Modulus (g cm?®)
(a.u.) (MPa) E (GPa)
8% 1240 4.15+0.5 65+3 6.45 NiTi alloy
0.8% 760 3.50£0.5 210 +5 8.03 316L stailnless
stee

TEM and XRD studies of plastically deformed martensitic TiNi thin films
irradiated with 5 MeV Ni-ion (Ni%*) (atomic weight = 58.693) and various fluences
and temperatures showed a continuous amorphous matrix. Irradiations to similar
doses of Ni*2 at 150, 200, and 250 °C showed that the amorphization kinetics slow
down appreciably as the temperature is increased in this range. No amorphization
was detected at irradiation temperatures T > 350 °C, even after doses of 4 dpa
[45,77-78]. lon implantation in TisgsNisos SMA with modified surfaces by the high-
dose ion implantation (HDII) technique was done in two stages: with Cu-ions (Cu*?)
(atomic weight = 63.546) then with Ti-ions (Ni*?) of equal energy (60 keV) [79].
The incident doses were: 0.7 x 107, 1.4 x 10'" and 2.1 x 10% ion cm™ for Cu*? and
1 x 10Y7 ion cm for Ti*2. The temperature of the implanted samples did not exceed
100 - 151 °C. The depth of an oxide layer did not exceed 10 nm in the polished
samples, while in the irradiated samples it was more than 50 nm.

The depth of an oxide layer did not exceed 10 nm in the polished samples,
while in the irradiated samples it was more than 50 nm. In the irradiated TiNi
samples, nickel was absent in the surface layer down to a depth of ~ 30-40 nm, Fig.
4 [79], and its content increased slowly to ~ 50 at % to the depth of 70-100 nm. It is
concluded that a special surface layer is formed under the irradiated side with
chemical properties different from those in the same layer under the polished
surface. The depth of that layer is about ~ 70-100 nm. The implanted and the nearest
layers are enriched with carbon that is conditioned by the HDII technology. Carbon
is likely to exist as dispersion particles of TiC compound which strengthen the
mentioned layers. Distribution of the chemical elements composition depends on
sputtering time in TissNisos SMA. After a HDII treatment the sample surface is
protected from crack formation [80].
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Figure (4). Distribution of the chemical elements composition depending on sputtering time in the
TiagsNisos SMA with: (a) polished surface, and (b) implanted surface, Reference [78].

Deformed (4 % Tensile Strain) and undeformed martensite NiTi thin films,
before irradiation with Au ions (Au*®) (atomic weight 196.968) at 350 MeV, Fig. 5,
indicate that the internally equilibrated residual stress remains after deformation [81].

Figure (5). (a) Bright-field TEM image of 102 Au ions cm undeformed specimen that shows tracks
(~ 10 nm @) in martensite and Ti,Ni precipitates. (b) High-resolution TEM image of 10%?
ions cm™ undeformed specimen showing an austenite phase surrounding the tracks,
Reference [79].
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lon tracks were observed in both martensite and the TiNi precipitates. The Ti-
rich thin film microstructures contained a homogeneous distribution of Ti,Ni phase
within the grain Fig. 6a, and act as barriers and interrupt the growth of large variants,
leading to a finer microstructure, causing the preferential development of (001)
compound type twinning modes, which are less common in bulk materials, since the
precipitates formed at the grain boundaries lead to poor mechanical properties. In thin
films, these precipitates appear near grain boundaries. Closer examination (Fig. 6b)
revealed that the tracks were surrounded by austenite with a lattice parameter of 0.305
nm, which is similar to the lattice constant calculated from the X-ray spectra
determined from the inset fast Fourier transform (FFT) pattern [81].
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Figure (6). X-ray diffraction spectra showing the effects of deformation on the pre-irradiated
microstructure by Au ions, Reference [79].

A grazing incidence X-ray diffraction spectra, Fig. 7, shows the result for
three irradiation conditions (10*? Au ions cm? for deformed martensite, and both
102 Au ions cm? and 10** Au ions cm2 for undeformed material), and confirms the
presence of irradiation-induced B2-austenite phase. Splitting of the peak at ~ 42°
indicates the formation of the R-phase. The slight broadening of the austenite
diffraction peaks is observed for the 10% ions cm case, indicates an increase in the
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amorphous material [81]. Table 3 shows the various phase volume fractions,
calculated from integrated intensities using a pseudo-Voight peak profile fit and the
Powder Cell and JADE 6.0 commercial XRD software packages, and both
amorphization and stabilization of irradiation-induced austenite increase with both
dose and pre-deformation.
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Figure (7). X-ray diffraction spectra for three irradiation conditions (10'2 Au ions cm?  for
deformed martensite, and both 10'? Au ions cm? and 10* Au ions cm2 for undeformed
material), showing effects 350 MeV Au ion irradiation, on the sputter deposited Ti-rich
NiTi thin films, Reference [79].

Table (3). Phase volume phase fractions after Au ion irradiation, Reference [79].

Specimen Martensite Austenite R Phase  Ti,Ni Amorphous
As-received 92.4 0 0 7.6 0

1 x 10* undeformed 45.3 6.4 26.9 6.3 15.1

1 x 10*® undeformed 4.2 37.1 231 4.4 312

1 x 10" deformed 27.7 10.2 27.7 5.1 29.3

DSC measurement analysis of transformation temperatures and enthalpie
(H), where Ms, Mg, Rs, Re, As, and Ag correspond to the martensite start, martensite
finish, R-phase start, R-phase finish, austenite start and austenite finish, respectively.
Ms, Mr and AH for the undeformed material decreased with increasing influence and
depressed further in the deformed material as compared to the undeformed one for
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the same irradiation dose, Table 4 [80]. Lagrange et al. [80] reported that the
unirradiated martensite was stable up to ~ 60 °C, indicating that the beam heating
was not responsible for the observed transformation.

Table (4). Transformation temperatures of the TiNi SMA thin films before and after Au ion
irradiation, Reference [79].

HA~>M A HMA.AA AF AS RF RS M}: MS

) (3/g) () () (O (O (o C) Specimen

275 28.1 96.9 63.9 60.5 63.3 8.9 61.5 As-received

12

13.7 20.1 837 392 572 618 -10 a7  1x10
undeformed
1x10%

13.1 16.9 64.4 415 47.7 53.3 -51.5 -16.6 undeformed

16.6 19.7 75.2 52.5 57.9 60.4 -18.9 10 1 x 10" deformed

4. Effect of Annealing and Aging on lon-Implanted Nitinol Alloys

Electron, proton and neutron induced irradiation effects can be easily eliminated by
annealing the specimens at 247 °C or aging at room temperature for 76 days, [60],
which confirms that the induced defects are temporary.

Amorphized TiNiCu specimens by Xe* irradiation were heated between 298
and 750 °C for 10 min. [74]. The recovery process was observed by post-irradiation
annealing experiment from room temperature to 750 °C. The microstructure after the
recrystallization is different from that of the unirradiated sample because they
experienced different phase transformation: the former transformed from the
amorphous phase and the latter came from the diffusionless martensitic
transformation.

Post-irradiation annealing experiments indicate that no thermally activated
crystallization occurred during Ni* irradiation at temperatures up to 250 °C [77]. A
full recovery of the original transformation characteristics was achieved after a short
annealing of Ni* irradiated nitinol at 400 °C for 30 min.

Shape memory effect can be obtained by solution treatment at high
temperatures between 600 °C and 900 °C and subsequent aging at a temperature
around 400 °C [82]. This aging process induces precipitation hardening of Ni-rich
phases [83]. The transformation temperatures are elevated significantly as the matrix
composition adjusts during aging [84].
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5. Conclusion
From this review, we conclude that:

lon implantation yields partial restoration phenomenon and recrystallization
may happen in NiTi alloys. Internal interfaces and surfaces at internal pores are
efficient sinks for the ion-induced defects. Ms, Mr and AH, for the undeformed
material, decrease with increasing fluence of ion implantation and were depressed
further for the deformed specimens at the same irradiation dose. Grazing incidence
X-ray diffraction spectra confirm the presence of irradiation-induced B2-austenite.
The observed slight broadening of the austenite diffraction peaks indicates an
increase in the amorphous material. The total ion damage necessary to initiate the
long-range disordering of bulk NC TiNi alloy is higher by a factor of at least one
order of magnitude compared to polycrystalline TiNi, which is already partially
amorphized at a dose of 0.4 dpa. No amorphization was detected at irradiation
temperatures of 350 °C or higher, even after doses of 4 dpa. Irradiations to similar
doses of Ni*? ions at different temperatures showed that the amorphization kinetics
slow down appreciably as the temperature is increased.

A special surface layer is formed, under the irradiated surface, with chemical
properties different from those in the same layer under the polished surface. The
depth of that layer is about ~ 70-100 nm. The implanted and the nearest layers are
enriched with carbon which exist as dispersion particles of TiC compound which
strengthen the mentioned layers and act as barriers and interrupt the growth of large
variants, leading to a finer microstructure, causing the preferential development of
(001) compound type twinning modes.

The long-range disordering of bulk NC TiNi alloy is at least one order of
magnitude higher as compared to CG TiNi. A full recovery of the original
transformation characteristics was achieved after a short annealing of Ni-ions
irradiated nitinol at 400 °C for 30 min.

Aging processes induce precipitation hardening of Ni-rich phases, and the
transformation temperatures are elevated significantly as the matrix composition
adjusts during aging. Annealing at 277 °C initiates recrystallization and basically
finishes at 750 °C. The crystallization temperature of amorphous alloys is
significantly lowered by heavy ion and electron irradiation.
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