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1. Introduction 

Recently, the concept of deformation technique has been exploited to a great extent 

in several fields of sciences [1-4, 7-10, 17]. Other techniques were suggested and 

discussed in some literatures [6, 11-13, 18, 19].   The deformation technique has 

been applied for the hyperbolic and trigonometric functions. Specially, the author 

used this technique previously for the probability distributions, precisely for the 

hyperbolic secant distribution [8-10]. The q-deformed hyperbolic secant distribution, 

which is denoted by q-DHS distribution, has been constructed and its properties 

have been reviewed and discussed. This distribution has been obtained by 

introducing a positive deformation parameter "q" [9].  

Our purpose here is to present and study an extension of q-DHS distribution 

by introducing a positive parametric function q(w). Moreover, we use a linear 

function of the mentioned random variable with coefficients as functions of the 

scalar parameter w. For this study, we will consider some appropriate assumptions 

with respect to the introduced parametric function as well as the used coefficients in 

the mentioned function of the random variable.       

This paper is organized as follows: Section 2 deals with the original 

hyperbolic secant distribution "HS distribution" and q-DHS distribution with some 

main interesting properties. The ( )q w -deformed hyperbolic secant distribution "

( )q w -DHS distribution" is established and moreover some corresponding 

definitions and properties are illustrated in section 3. Some corresponding functions 

and measures of the ( )q w -DHS distribution are derived in section 4. In Section 5 

using the Maximum Likelihood method "ML method" with respect to the 

constructed distribution to obtain on the Maximum Likelihood Estimation "MLE" of 

( )q w  is explained. Section 6 contains an illustrative example. Finally, the paper 

has been concluded in Section 7. 

 

2. Definition of the q-Deformed Hyperbolic Secant Distribution 

According to [5, 8-10, 12, 20], the pdf of HS distribution of the continuous random 

variable X is given by 

   
HS

1
( ) sech ( ) ; R

2 2
= 

x
f x x


.                     (1) 

This distribution is symmetric about zero with unit variance and it has some closed 

forms for some corresponding functions and measures. 

The q-DHS distribution was originally introduced by the author [9]. It has 

probability density function "pdf"  
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DHS ( ; ) sech ( ) ; R ,
2 2

q q

q x
f x q x− = 



        (2) 

where q  is a real positive scalar parameter and  

1 2
sech

cosh
q x x

q

x
x e q e −

= =
+

. 

This is a family of continuous probability distributions in which the 

deformation parameter q  can be used to introduce skew. Each q-DHS distribution 

is unimodal with unit variance. The corresponding moments-generating function 

"mgf", characteristic function "cf", cumulants-generating function "cgf" and score 

function for this distribution have been derived in closed forms which depend on q . 

Furthermore, all moments of q-DHS distribution exist and the mean, the median and 

the mode have equal non-zero values as a function of .q  This family of q-DHS 

distributions was discussed in some details in [9]. 

 

3. The q(w)-Deformed Hyperbolic Secant Distribution 

3.1 Definition of the q(w)-DHS distribution 

Throughout this paper we consider the deformation technique for which a positive 

parametric function ( )q w  is introduced as a factor of the exponential decay part of 

the hyperbolic secant function "HS function" [1]. The ( )q w -DHS distribution is 

defined by means of the ( )q w -deformation for HS functions. Firstly, we explain 

the concept and some properties of the deformed hyperbolic functions by 

introducing an arbitrary parametric function ( )q w  and extending the random 

variable X  by ( , )X w=  , where .w R   

Definition 1. Let ( )q w  be an arbitrary real positive parametric differentiable 

function of ,w deformed hyperbolic functions to be - ( )q w . We define the w R  

a family of the functions 
( ) ( )sinh , cosh ,q w q w   

( ) ( ) ( )tanh , sech , cothq w q w q w     

andas ( )cschq w    
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( )

( ) ( ) ( )

( )

( )

( ) ( ) ( )

( ) ( ) ( )

sinh( ) ( )
sinh , cosh , tanh ,

2 2 cosh

cosh 1 1
coth , sech , csch ;

sinh cosh sinh

q w

q w q w q w

q w

q w

q w q w q w

q w q w q w

e q w e e q w e− −− +
= = =

= = =

    
  




  

  

 (3) 

where  ( , )x w=   is a real differentiable function of x  and w , and it is also 

linear function in x with positive partial derivative with respect to x , i.e. 

( ) ( )C w x D w= + , ( ) (0, )C w    as  a derivative of   with respect to x ,  and 

( )D w R . The parametric function ( )q w is called the deformation parametric 

function.  

 

Lemma 1.  A family of ( )q w -deformed hyperbolic functions satisfies the following 

relations of the first derivatives of  

( ) ( ) ( ) ( )sinh , tanh , cosh , sechq w q w q w q w     with respect to x : 

2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

(sinh ) ( )cosh , (tanh ) ( ) ( ) sech ,

(cosh ) ( )sinh , (sech ) ( )sech tanh .

 = =

 = = −

q w q w q w q w

q w q w q w q w q w

C w C w q w

C w C w

   

    
 (4) 

Furthermore, if ( ) 1q w   then ( )sinhq w   is not odd function with respect to   

and ( )coshq w    is not even function with respect to , i.e. 

 

( ) 1 ( ) 1

( ) ( )

sinh ( ) ( ).sinh , cosh ( ) ( ).cosh .q w q w

q w q w

q w q w− = − − =   

 

Moreover, the following relations are satisfied: 

2 2 2 2

( ) ( ) ( ) ( )
cosh sinh ( ) , tanh 1 ( ).sech ,

q w q w q w q w
q w q w− = = −   

 

2 2

( ) ( )
coth ( ).csch 1 .

q w q w
q w= + 

 

Proof: Based on [1, 9, 15] and Definition 1, we can directly prove this lemma. 
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The main idea of the suggested deformation technique is to generalize the 

HS-distribution in an alternative formula which depends on a real positive 

parametric function and also to study its important corresponding characteristics. 

As an immediate consequence of previous definition and lemma, we can 

define the pdf of the constructed ( )q w -DHS distribution as the following. 

Definition 2. Let  ( ) DHSq wX −  be a continuous random variable. The variable 

( ) DHSq wX −  has a ( )q w -DHS distribution with a positive real parametric function 

( )q w ,  if its pdf given by 

( ) DHS ( )

( ) ( )
( ; ( )) sech ( ); , R ,

2 2
q w q w

C w q w
f q w x w− = 

 


     (5) 

where ( ) (0, )q w    and ( , )x w R=   . In this case, ( ) DHSq wX −  is said to 

be a ( )q w -DHS random variable with a parametric function ( )q w , defined over 

R . Furthermore, the corresponding real valued  cdf
( ) DHS( ; ( ))q wF q w−  is 

  

( ) DHS ( )

1 1 1
( ; ( )) arctan[ sinh ( ) ],

2 2( )
q w q wF q w

q w
− = +

 



     (6) 

with the inverse cdf  (critical value)  

( ) DHS 2 1 1 1 ( )
[arcsinh[tan ( ( ))] ln ] ,

. ( ) 2 2 ( ) ( )

q w D w
x

C w q w C w

− == − − −  


      (7) 

where 
( ) DHS ( ) DHS

( ) DHS[ ] 1 ( )q w q w
q wP X x F x− −

− = − =   , (0,1)  .                       

 

Without loss of generality, let ( ) 0D w =  and in this case the values 
( ) DHSq wx −

  

for some different values of w and for each fixed function ( )q w using (7) can be 

easily computed. 
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3.2 Properties of the q(w)-DHS distribution 

Obviously, from the following figures (Figures 1 and 2), the exponential tail 

behavior of the ( )q w -DHS distribution guarantees the existence of the expectation 

of the ( )q w -DHS variable ( ) DHSq wX −  and generally all moments. In particular, 

the expectation of the variable ( ) DHSq wX −  and also the squared variable  

2

( ) DHSq wX −
  can be derived and given respectively by 

( ) DHS

2 2

( ) DHS 2 2 2

2
[ ] ln [ ( )] ,

( )

1 4
[ ] ( ln [ ( )] ) .

( ) ( )

−

−

= =

= +

q w

q w

E X q w
C w

E X q w
C w C w





      (8) 

This implies that the variance 
2  equals

21/ ( )C w .  

We will next propose some properties of ( )q w -DHS distribution through 

some possible propositions. 

Proposition 1. The ( )q w -DHS distribution with a positive real valued parameter 

( )q w  is symmetric about 0 for ( ) 1q w = . Moreover, it skewed more to the right 

for ( ) 1q w   and skewed more to the left for ( ) 1q w  . For all positive real 

values of ( )q w , the kurtosis is always constant.      

Different densities for ( )q w -DHS distribution with ( ) 1q w   and their 

corresponding densities with ( ) 1q w   for some values of w  and for each fixed 

parametric function are plotted in Figure 1. Moreover, Figure 2 illustrates  ( )q w  

the pdf for ( )q w -DHS distribution with ( ) 1q w =  
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Figure 1: Probability density function for the ( )q w -DHS distribution for different values of ( )q w  

 

Figure 2: Probability density function for the ( )q w -DHS distribution for the case  ( ) 1q w =  

 



190  S. A. El-Shehawy and S. A. El-Serafi 

Graphically, the previous given statements in Proposition 1 are valid. 

Computation-ally, we can find that the density corresponding to (5) has larger 

(smaller) mean, when the value of ( )q w  is increasing (decreasing).  

Proposition 2. The score function 
( ) DHS( ; ( ))q wS q w−   of the ( )q w -DHS 

variable 
( ) DHSq wX −

 with ( ) 0q w   is given by  

      
( ) DHS ( )( ; ( ) ) ( ) tanh .

2 2
− =q w q wS q w C w

  


             (9) 

Setting ( ) 1q w =  and ( ) 1C w = , the last equation reduces to 

HS( ) tanh
2 2

x
S x =

 
, where 

HS( )S x   is the score function of the HS distribution. 

Moreover, when ( )q w q=  (i.e. parameter) and ( ) 1C w = , the equation (9) 

reduces to  DHS( ) tanh
2 2

− =q q

x
S x

 
  which is the score function of the q -

DHS variable 
DHSqX −

 with 0q  .               

Proof: Based on [16] and other literatures, the score function of a probability 

distribution is defined by 
(pdf )

( )
pdf

S x


= − . By using (5), the form (9) of 

( ) DHS( ; ( ))q wS q w−   can be obtained with the reduced cases HS( )S x  and 

DHS( ) tanh
2 2

− =q q

x
S x

 
 for ( ) 1q w = , ( ) 1C w =   and  ( )q w q= , ( ) 1C w = , 

respectively.  

The next proposition indicates to the unimodality of the ( )q w -DHS 

distribution for all positive real values of the parametric function ( )q w . 

Proposition 3. The ( )q w -DHS distribution is unimodal for ( ) 0q w  .  

Proof: Based on the function 
( ) DHS( ; ( ))q wf q w−   in (5), we aim to show this 

function is unimodal for all choices of ( )q w  Since 
( ) DHS( ; ( ))q wf q w−  is a 

continuously differentiable function, the only critical points for this function satisfy 

( ) DHS( ; ( )) 0q wf q w−
 =  (the derivative with respect to x (. Thus, we want to 

prove that the last equation has exactly one root, and that this yields a relative 
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maximum. Since ( ) DHSlim ( ; ( )) 0q wf q w−
→ 

=


 , then if there is one critical point, 

it must yield the absolute maximum, so we need to prove there is exactly one root to 

the derivative equation. After simplification, this can be seen to be equivalent to 

proving   ( ) ( )(sech ).(tanh ) 0
2 2

q w q w =
   

 has exactly one root. 

Set 
2

( ; ( )) ( ln[ ( ) ] )x q w y q w= +


, the last statement is equivalent to showing 

the equation sech( ) tanh( ) 0y y =  has exactly one root 0y =  in R . This 

means that the equation 
( ) DHS( ; ( )) 0q wf q w−
 =  has only the root 

* *
2

( , ) ln[ ( ) ]x w q w= = 


 (i.e. *
2

ln[ ( ) ]
. ( )

x q w
C w

=


) in R . Since 

*
( ) DHS( ; ( )) 0q wf q w−
   with * *( , )x w=  , then the point *x  is the maximum 

value of the ( )q w -DHS distribution. It then also follows this yields a relative 

maximum (and hence absolute maximum) since ( ) DHS ( ; ( ))q wf q w−
   is positive 

to the left of the root * ,x and negative to the right (Figure 3.).   

    

 

Figure 3: Derivative of the unimodal pdf of ( )q w -DHS distributions with ( ) 0q w   

 

Note that, the mode for ( )q w -DHS distribution have the above value of the 

root *x , which equals the obtained mean.   

Proposition 4. The mode and the median for the ( )q w -DHS distribution with 

( ) (0, )q w    have the same value of the mean.  
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Proof: Due to the unimodality of the mentioned distribution, the previous obtained 

results and the fact that the median of the unimodal distribution lies between the 

mean and the mode of the same distribution, we can find that the given statement in 

the proposition is valid, i.e.  

( )-DHS ( )-DHS

2
Mode Median ln[ ( ) ] , ( ) 0

( )
= = q w q w q w q w

C w
.(10) 

Note that, the case of  ( )q w q=  (where 0q  ), ( ) 1C w = , the q-DHS distribution 

is recovered and also the case of ( ) 1q w = , ( ) 1C w = , gives the original HS 

distribution. 

 

4. Moment-generating Function of the q(w)-DHS Distribution 

In this section, we will derive the corresponding closed forms for the mgf, the cgf 

and also the cf of the ( )q w -DHS distribution. Moreover, the moments of 

( ) DHSq tX −
 can be deduced from the mgf. Consequently, the corresponding 

skewness and kurtosis coefficients of the constructed ( )q w -DHS distribution will 

be determined. 

Proposition 5. The mgf function ( ) DHSM ( ; ( ) )q w t q w− of with  
( ) DHSq wX −

 

is given by ( ) 0q w   

( ) DHS

2
ln[ ( )

. ( )
]

( )
M ( ; ( )) e sec ,

2
− = q w

t
q w

C w C w
t q w t t

 

. (11) 

In particular, all moments of  
( ) DHSq wX −

  exist. 

Proof: By using the substitutions 
2

( ; ( )) [ ln ( ( ))]= +x q w y q w


 and 

2

( )
=

t
B

C w
, we find that the mgf of the variable 

( ) DHSq wX −
 is given by 

( ) DHS

ln[ ( ) ]1
M ( ; ( )) e e sech .q w

B q w yB
t q w y dy





−

− 

= 
             (12) 
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According to [14], we can find that the following integration, which can be easily 

worked out with the help of some mathematical packages  

            

e sech sec , 1



− 

= 
yB

y dy t B

.           (13)  

From (12) and (13), the closed form (11) of mgf of 
( ) DHSq wX −

 can be obtained 

Proposition 6. The first four non-central moments of ( ) DHSq wX −  with ( ) 0q w   

are given by 

     

2

1 2 2 2 2

3

3 3 3 3

1 1 1
ln [ ( ) ] , ( ln [ ( ) ]) ,

. ( ) ( ) ( )

3 1
ln [ ( ) ] ( ln [ ( ) ]) ,

. ( ) ( )

 = = +

 = +

q w q w
C w C w C w

q w q w
C w C w

 
 


       

     

2 4

4 4 2 4 4 4

5 6 1
( ln [ ( ) ]) ( ln [ ( ) ]) .

( ) ( ) ( )
 = + +q w q w

C w C w C w


 
           

Note that the previous forms in Proposition 6 can be easily worked out with the help 

of some mathematical packages. In this case, the first four central moments of 

( ) DSHq wX −  are 

1 0=
, 

2 3 42 4

1 5
, 0 ,

( ) ( )C w C w
= = =  

. 

This implies that the skewness and the excess kurtosis are 0=  and 2=  

respectively.  

Using the relation between the cf and the mgf, we can obtain the cf of the 

( )q w -DHS distribution in the following closed form: 

( ) DHS

2
ln[ ]

.
( )

( ) ( )
( ; ( )) e sech , .

2
− = q w

i t

C
q w

w C w
t q w t t

 

       (14) 
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The next proposition gives the closed form of the cgf and the used closed 

form to calculate the r-th cumulant rk of the ( )q w -DHS distribution. 

Proposition 7. Assume that the variable ( ) DHSq wX −   follows the ( )q w -DHS 

distribution with ( ) 0q w  . The corresponding cgf of this variable is given by 

( ) DHS

2 ( )
K ( ; ( )) ln[ ( ) ] ln[sec ] , ,

( ) 2
− = + q w

t C w
t q w q w t t

C w




    (15) 

and the r-th cumulant , 1,2,3,rk r = , of ( ) DHSq wX −  is determined by 

( )

( ) DHS 0 ( ) DHS 0[ K ( ; ( )) ] [K ( ; ( )) ] , 1,2,3, ,− = − == = =
r

r

r q w t q w tr

d
k t q w t q w r

d t
 (16) 

where 

(1)

( ) DHS

(2) 2

( ) DHS

2
K ( ; ( )) ln[ ( ) ] tan ,

. ( )

K ( ; ( )) 1 tan ,

q w

q w

t q w q w t
C w

t q w t

−

−

= +

= +



 

(3) 2

( ) DHS

(4) 2 2 2 2

( ) DHS

K ( ; ( )) 2 tan (1 tan ) ,

K ( ; ( )) 2(1 tan ) 4 tan (1 tan ) ,

q w

q w

t q w t t

t q w t t t

−

−

= +

= + + +
  

(5) 2 2 3 2

( ) DHSK ( ; ( )) 16(1 tan ) tan 4 tan (1 tan ) , .q w t q w t t t t− = + + +
       

The r-th cumulants rk  of ( ) DHSq wX −  for some values of r  can be easily 

worked out with the help of some mathematical packages and they have been 
calculated.  

Moreover, the moments of ( ) DHSq wX −  are related with the cumulants, i.e.  

2 2

1 1 2 2 3 3 4 4 22 4

1 1
, , , [ 3( ) ]

( ) ( )
k k k k k

C w C w
 = = = = = = +     

,…, 

and so on. 
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In the next section, we will illustrate the ML Method to determine a certain 

value of the parametric function that maximizes the probability (likelihood) of the 

sample data from the ( )q w -DHS distribution. 

 

5. Maximum Likelihood Parameter Estimation 

To obtain the MLE for the parameter ( )q w for the ( )q w -DHS distribution, start 

with the pdf of the ( )q w -DHS distribution which is given in (5).  

Suppose that 1 2, , , nX X X  are an iid random sample from a ( )q w -DHS 

distribution. Then the likelihood function is given by 

1/ 2

1 2

1

( , , , ( )) ( ) ( ) [ exp( ) ( ) exp( )] ,
2 2

−

=

= + −
n

n n i i
n

i

L x x x q w C w q w q w
   

 (17) 

with ( ; )i ix w=  . The log-likelihood function is 

2

1

( ) ( ( )) ln( ( ). ( )) ln[ exp( ) ( ) exp( )].
2 2 2

n
i i

i

n
w q w C w q w q w

=

= = − + −
   

 (18) 

Taking the derivative of the log-likelihood function with respect to w  and setting it 

equals zero yields 

( ) ( )

1

( ) ( )
[ tanh ( ) ( )exp( )sech ( )] ,

2 ( ) ( ) ( ) ( ) 2 2 2=

 + − =
 +


n

i i i
i q w q w

i

C w q w
q w n

C w q w C w q w

     
 

 (19) 

with ( ) ( )i iC w x D w  = + . Solving (19) iteratively, then the MLE 

ˆ ˆ( ) ( )q w q w=  can be obtained. 

 

6. Application 

Here we give an example as a particular case of the mentioned deformed distribution 

and explain most of the obtained results for this case.  

Let  ( ) DHSq wX −  be a continuous random variable which follows the ( )q w -DHS 

distribution with the parametric function ( ) exp( )q w w= . We consider 
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. In this case we can easily find that the pdf of cosh( ) 3+w x  ( , )= x w 

given by, 
exp( ) DHSwX −

 

exp( ) DHS exp( )

exp( / 2)
( ; exp( )) sech ( ); , R ,

2sech( ) 2
w w

w
f w x w

w
− = 

 


 

and the cdf  of 
exp( ) DHSwX −

 is  

exp( ) DHS exp( )

1 1
( ; exp( )) arctan[exp( / 2) sinh ( ) ],

2 2
− = + −w wF w w

 


  

with the critical value 

exp( ) DHS 2 1
sech( ) .[ (arcsinh[tan ( ( )) ) ) 3] ,

2 2

w w
x w− == − + −  

  

where 
exp( ) DHS exp( ) DHS

exp( ) DHS[ ] 1 ( )w w
wP X x F x− −

− = − =   , (0,1)  .    

We can find that, the expectation of the exp( )w -DHS variable 

exp( ) DHSwX −
 (the mode, the median and the 1st non-central moment) and also the 

squared variable  
2

exp( ) DHSwX −
  (the 2nd non-central moment) are given respectively 

by 1 s.ech( ) / =w w   and 2 2 2

2 [1 / ]sech ( ). = +w w   Moreover, the 

variance of this variable is 
2 2=sech ( )w . Also, The mgf function of  the 

exp( ) DHSwX −
  is given by 

exp( ) DHS

sech( )
M ( ; exp( )) sec ( ) exp[ ];

2 sech(w)
− = w

t w w
t w t t




. 

The 3rd and 4th non-central moments of the variable 
exp( ) DHSwX −

  can be 

obtained as  

3 3 3 2 2 4 4 4

3 4[3 / / ]sech ( ) and [5 6 / / ] sech ( ). = + = + +w w w w w w     
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Thus, the first four central moments of the variable ( ) DSHq wX −  can be also 

derived and the results are
2 2 4

1 2 3 40 , sech ( ) , 0 , 5.sech ( )w w= = = = =     . Then we find that 

0=  and 2= . According to the forms (14) and (15), the cf and cgf of the 

exp( )w -DHS distribution are given respectively in the following forms: 

exp( ) DHS

. sech( )
( ; exp( )) sech ( ) exp[ ] ,− =w

i t w w
t w t



exp( ) DHS

. sech( )
K ( ; exp( )) ln[sec ( ) ] ,− = +w

t w w
t w t


 

with .
2 sech( )

t
w




 By using the last form of the cgf , we can find that: 

  
(1)

exp( ) DHS

sech( )
K ( ; exp( )) tan ( ) ,− = +w

w w
t w t


 

and 
( )

exp( ) DHSK ( ; exp( )) , 2,3,4,...,k

w t w k− = as in Proposition 7. Moreover, the 

moments of ( ) DHSq wX −  are related with the cumulants, 

2 2

1 1 2 2 3 3, sech ( ). , ,k w k k = = = = =      

4 2

4 4 2sech ( ) [ 3( ) ]= +w k k , ..., and so on. 

Finally, by solving the following nonlinear system in w iteratively,  

exp( ) exp( )

1

1
[ . .sinh( ) tanh ( ) exp( )sech ( )] ,

2 tanh( ) 1 2 2 2=

+ − + =
+


n
i i i

i w w

i

x w w n
w

     


 

with cosh( ) 3= +i iw x  and sinh( ).i iw x = , 1,2,...,i n= , one 

can obtain ŵ  and thus the MLE of ( ) cosh( )q w w= is ˆ ˆ( ) cosh( )q w w= .  

Different densities for the exp( )w -DHS distribution with exp( ) 1w   and 

their corresponding densities with exp( ) 1w   for some values of w  are plotted in 

Figure 1. Moreover, Figure 2 illustrates the pdf for the exp( )w -DHS distribution 
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with exp( ) 1w = . The derivative of the unimodal pdf of exp( )w -DHS 

distributions is explained in Figure 3. 

 

7. Conclusions 

This paper discussed the construction of a family of the ( )q w -DHS distributions 

which can be considered as a corresponding extension of a family of the q -DHS 

distributions.  We defined the ( )q w -deformed hyperbolic functions which have 

been implemented by applying a deformation by introducing a positive real valued 

parametric function. We studied the effect of this introduced parametric ( )q w   

function in compare with the previous studies on the hyperbolic secant distribution. 

Here, we introduced the deformation parametric function ( )q w  as a factor of the 

exponential decay part of the HS distribution. Moreover, we considered a 

differentiable real valued function ( , )X w=   instead of the random variable 

with positive partial x . We assumed that this function is linear function in X

derivative with respect to .x We found that the constructed family of the ( )q w -

DHS distributions is unimodal. In general, it has variance with value not equals 1. 

We noted also that the derived closed forms of the corresponding mgf, cf, cgf and 

score function for the ( )q w -DHS distributions depend on ( )q w  and the 

derivative ( )C w  of  . Furthermore, some main properties of this constructed 

family of deformed distributions were discussed and we have noted that their 

moments exist. Moreover, there is unique value of their mean, median and mode 

which still also as a function of the deformation parametric ( )q w  and ( )C w . The 

skewness and excess kurtosis of these constructed distributions are still respectively 

equal to 0  and 2. The ML method to determine the MLE for the parameter ( )q w  

has been illustrated and we obtained a nonlinear system which can be solved 

iteratively but by using high processing systems of computers. A particular case of 

the ( )q w -DHS distributions has been presented.  
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 الزائدي القاطع توزيع تشوه لدراسة دالة بارامترية استخدام
 

    ** و   سعيد الصيرفي *  شعبان الشهاوي
 مصر  -شبين الكوم  – منوفيةجامعة ال  - كلية العلوم   -قسم الرياضيات  *

 مصر  - لمنوفية جامعة ا  -هندسة الإلكترونية بمنوف  كلية ال - الهندسية لرياضياتلفيزيقا واقسم ا **

 

تأثير تطبيق طريقة التشوه من خلال إدخال دالة   دراسة في هذا البحث نفدم  ملخص البحث.

 بعض الخصائص ونناقش بفروض ملائمة على توزيع القاطع الزائدي الاحتمالي    بارامترية

هذا بالإضافة لإستخلاص بعض الصيغ الرياضية لبعض الدوال    .الهامة المصاحبة
 .والمقاييس المرتبطة بالتوزيع الاحتمالي المتولد نتيجة التشوه الحادث
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