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1. Introduction

Recently, the concept of deformation technique has been exploited to a great extent
in several fields of sciences [1-4, 7-10, 17]. Other techniques were suggested and
discussed in some literatures [6, 11-13, 18, 19]. The deformation technique has
been applied for the hyperbolic and trigonometric functions. Specially, the author
used this technique previously for the probability distributions, precisely for the
hyperbolic secant distribution [8-10]. The g-deformed hyperbolic secant distribution,
which is denoted by g-DHS distribution, has been constructed and its properties
have been reviewed and discussed. This distribution has been obtained by
introducing a positive deformation parameter "g" [9].

Our purpose here is to present and study an extension of g-DHS distribution
by introducing a positive parametric function q(w). Moreover, we use a linear
function of the mentioned random variable with coefficients as functions of the
scalar parameter w. For this study, we will consider some appropriate assumptions
with respect to the introduced parametric function as well as the used coefficients in
the mentioned function of the random variable.

This paper is organized as follows: Section 2 deals with the original
hyperbolic secant distribution "HS distribution™ and g-DHS distribution with some
main interesting properties. The q (W )-deformed hyperbolic secant distribution "
q(w )-DHS distribution” is established and moreover some corresponding

definitions and properties are illustrated in section 3. Some corresponding functions
and measures of the g (W )-DHS distribution are derived in section 4. In Section 5

using the Maximum Likelihood method "ML method" with respect to the
constructed distribution to obtain on the Maximum Likelihood Estimation "MLE" of
q(w ) is explained. Section 6 contains an illustrative example. Finally, the paper

has been concluded in Section 7.

2. Definition of the g-Deformed Hyperbolic Secant Distribution

According to [5, 8-10, 12, 20], the pdf of HS distribution of the continuous random
variable X is given by

fHS(x)zgsech(%); X eR. 1)

This distribution is symmetric about zero with unit variance and it has some closed
forms for some corresponding functions and measures.

The g-DHS distribution was originally introduced by the author [9]. It has
probability density function "pdf"
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X
quHS(x;q)zﬂsechq(”T); x eR,

2 @)

where ( is a real positive scalar parameter and

1 2
cosh,x e*+qge”

sechq X =

X

This is a family of continuous probability distributions in which the
deformation parameter ¢ can be used to introduce skew. Each g-DHS distribution

is unimodal with unit variance. The corresponding moments-generating function
"mgf", characteristic function "cf", cumulants-generating function "cgf" and score
function for this distribution have been derived in closed forms which depend on Q .

Furthermore, all moments of g-DHS distribution exist and the mean, the median and
the mode have equal non-zero values as a function of . This family of g-DHS

distributions was discussed in some details in [9].

3. The g(w)-Deformed Hyperbolic Secant Distribution
3.1 Definition of the q(w)-DHS distribution

Throughout this paper we consider the deformation technique for which a positive
parametric function q (W ) is introduced as a factor of the exponential decay part of

the hyperbolic secant function "HS function" [1]. The ¢ (W )-DHS distribution is
defined by means of the q(w ) -deformation for HS functions. Firstly, we explain

the concept and some properties of the deformed hyperbolic functions by
introducing an arbitrary parametric function (W ) and extending the random

variable X by @ =@(X ,w ), where.w €R

Definition 1. Let q(w ) be an arbitrary real positive parametric differentiable
function of W , deformed hyperbolic functions to be -q (W ). We define the w € R
a family of the functions sinh, ,, ¢, cosh,,, @, tanh,,, ¢, sech,,, @, coth @

andas Csch,, ¢
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- N 0 A sinh
sinhq(w)¢=%, coshq(w)(o:%’ tanh,,, = hq(W)(p’
cosh, ., @
qiw) ()
cosh 1 1
Cothy 9 = M sechy,) ¢ = , Csthy,p=—";
sinh, ) @ cosh, ) @ sinh, ) @

where @ =¢(X,W) is a real differentiable function of X and W , and it is also
linear function in X with positive partial derivative with respect to X , i.e.
¢=C)x+D@w), Cw)e (0, ©) as a derivative of ¢ with respectto X , and
D@ )eR . The parametric function q(@w )is called the deformation parametric
function.

Lemma 1. A family of q (W )-deformed hyperbolic functions satisfies the following
relations of the first derivatives of
sinh,,, @, tanh,,, ¢, cosh,,, @, sech,,, ¢ with respect to X :

(sinhy,, )’ =C W )cosh,,, ¢, (tanh,,,, ¢)'=C W )aqW )sech;,, ¢,
(cosh,, @) =C (w)sinh,,, @, (sechy,, )’ =-C (W )sech,,, ¢ tanh ¢

(4)

Furthermore, if g (W ) # 1 then sinh, ., ¢ is not odd function with respect to ¢

and Coshq(w) @ is not even function with respectto @, i.e.

sinh, o, (@) =—qW ).sinh | ¢, coshq(w)(—go):q(w).coshigo.

qw) qw)

Moreover, the following relations are satisfied:

cosh? —sinh? =qw), tanh® =1-qg(w ).sech? ,
Q(W)(D l"I(W)(D Q( ) CI(W)(D CI( ) Q(W)go

coth? =q(w ).csch? +1.
Q(W)(D Q( ) Q(W)¢

Proof: Based on [1, 9, 15] and Definition 1, we can directly prove this lemma.
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The main idea of the suggested deformation technique is to generalize the
HS-distribution in an alternative formula which depends on a real positive
parametric function and also to study its important corresponding characteristics.

As an immediate consequence of previous definition and lemma, we can
define the pdf of the constructed g (W ) -DHS distribution as the following.

Definition 2. Let X, pus be a continuous random variable. The variable
XQ(W
q@w ), if its pdf given by

aw) =" qecn (70w <R,

)-ons has a q (W )-DHS distribution with a positive real parametric function

fq(w)—DHS (¢! (5)

where g ) € (0,0) and @ =@(X W) eR .Inthiscase, X _pns IS said to
be a (W )-DHS random variable with a parametric function q (W ), defined over
R . Furthermore, the corresponding real valued cdf F, .\ ps(; q@)) is

1 1 1 ) pe
Fw >_DHs((0; gw)) = E+;arctan[—smhq(w)(7¢)],

i Jaw) ©

with the inverse cdf (critical value)

x 30-PHS [arcsinh[tan (ﬂ(l—a))] S _bw) ,
7.CWw) 2 2 qw) C@w) 0
where P[X >Xg(‘”)‘DHS]=1—Fq(w)_DHS(Xg(W)‘DHS)=a, ae(0,1).
Without loss of generality, let D@ ) =0 and in this case the values x 9¢)~°"

for some different values of W and for each fixed function ¢ (W ) using (7) can be
easily computed.
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3.2 Properties of the g(w)-DHS distribution

Obviously, from the following figures (Figures 1 and 2), the exponential tail
behavior of the g (W ) -DHS distribution guarantees the existence of the expectation

of the (W ) -DHS variable X qw)-pns and generally all moments. In particular,
the expectation of the variable X, pus and also the squared variable

X ¢ can be derived and given respectively by

2
q(w )-DH

H=EK gy ol = g s NLTEOT,

2 _ 1 4 [T 7\2
E[XQ(w)fDHS]_Cz(W)"_”zCz(W)(In[ Q(W)]) @

This implies that the variance o equals1/C *(W ).

We will next propose some properties of ¢ (W )-DHS distribution through
some possible propositions.
Proposition 1. The q (W ) -DHS distribution with a positive real valued parameter
q@w ) is symmetric about 0 for (W ) =1. Moreover, it skewed more to the right
for (W ) <1 and skewed more to the left for q(W ) >1. For all positive real
values of g (W ), the kurtosis is always constant.

Different densities for q@W )-DHS distribution with q@ ) >1 and their
corresponding densities with (W ) <1 for some values of W and for each fixed
parametric function are plotted in Figure 1. Moreover, Figure 2 illustrates ¢ (W)
the pdf for g (W ) -DHS distribution with qw ) =1
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Figure 1: Probability density function for the q(w )-DHS distribution for different values of q (w )
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Figure 2: Probability density function for the q (w ) -DHS distribution for the case ¢ ) =1
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Graphically, the previous given statements in Proposition 1 are valid.
Computation-ally, we can find that the density corresponding to (5) has larger

(smaller) mean, when the value of (W ) is increasing (decreasing).

Proposition 2. The score function S\ pus(@;qW)) of the g )-DHS
variable X ¢\ pus With (W) >0 is given by
. 7T e
Sq(w )—DHS((Diq (W )) = EC (W ) tanhq(w) T
9)
Setting qWw)=1 and C@)=1, the last equation reduces to

Sps(X)= % tanh % , where S, (x) is the score function of the HS distribution.
Moreover, when (W )=q (i.e. parameter) and C (W) =1, the equation (9)
S =” tanh, 2 ich i i
reduces to S p5(X) = 5 anh, - which is the score function of the Q -

DHS variable X, s With 4 >0.

q-DH

Proof: Based on [16] and other literatures, the score function of a probability

_ (pdf)’
pdf
Sew)-ons(@0@W)) can be obtained with the reduced cases S, (X) and

distribution is defined by S(X)= . By using (5), the form (9) of

X
sq,DHs(x)%tanhq”T for qW)=1, C@)=1 and q@)=q, C@Ww)=1,

respectively.

The next proposition indicates to the unimodality of the (W )-DHS
distribution for all positive real values of the parametric function q (W ).

Proposition 3. The (W ) -DHS distribution is unimodal for (W ) >0.

Proof: Based on the function f .\ (9 qW)) in (5), we aim to show this

function is unimodal for all choices of qW ) Since f_,\ pys(; QW ))is a

continuously differentiable function, the only critical points for this function satisfy

f qw)-ons (@) A@ )) =0 (the derivative with respect to X ). Thus, we want to

prove that the last equation has exactly one root, and that this yields a relative
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maximum. Since  lim f_ .\ .o (@;q @ )) =0, then if there is one critical point,
@—> to

it must yield the absolute maximum, so we need to prove there is exactly one root to
the derivative equation. After simplification, this can be seen to be equivalent to

proving (sech %(0 ).(tanh

qw)

TQ,
) > ) =0 has exactly one root.

Set p(x;qWw)) = E(y +In[/g@ )] ). the last statement is equivalent to showing
v

the equation Sech(y ) tanh(y) =0 has exactly one root ¥ =0 in R . This
means that the equation f |  ,c(@;qW))=0 has only the root

§ = ol W) =2 In[q@)] (e ¢ - fesnlaw]) in R sinc

f w)-ons (¢ 50W)) <O with @ = (X" ,W ), then the point X* is the maximum

value of the ¢ (W )-DHS distribution. It then also follows this yields a relative

maximum (and hence absolute maximum) since f '\ pus(®; Q@ )) is positive

to the left of the root X*, and negative to the right (Figure 3.).

1.5
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Figure 3: Derivative of the unimodal pdf of ( (W ) -DHS distributions with q(w ) > 0

Note that, the mode for g (W ) -DHS distribution have the above value of the
root X™ , which equals the obtained mean.

Proposition 4. The mode and the median for the ¢ (W )-DHS distribution with
g ) € (0,) have the same value of the mean.
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Proof: Due to the unimodality of the mentioned distribution, the previous obtained
results and the fact that the median of the unimodal distribution lies between the
mean and the mode of the same distribution, we can find that the given statement in
the proposition is valid, i.e.

. 2
Mode, (, ).ons = Median, ) oy = T(W) In[yaw)], qWw)>0
(10)

Note that, the case of W ) =0 (where @ >0), CW)=1, the g-DHS distribution

is recovered and also the case of q(W ) =1, C () =1, gives the original HS
distribution.

4. Moment-generating Function of the q(w)-DHS Distribution

In this section, we will derive the corresponding closed forms for the mgf, the cgf
and also the cf of the (W )-DHS distribution. Moreover, the moments of

X q(t)-DH
skewness and kurtosis coefficients of the constructed g (W ) -DHS distribution will
be determined.

s can be deduced from the mgf. Consequently, the corresponding

Proposition 5. The mgf function M) pus(t; AW ))of with X\ s
is given by q(w ) >0

2t
nC(W)In[\/q(W)] 7Z'C(\N)

MQ(W)—DHS(t;q(\N))Ze I sect, |t |< 5 )

In particular, all moments of X ¢, pus eXist.

Proof: By using the substitutions (o(x;q(W))zg[y +In(ya@w))] and
Vs

t
B = ) , we find that the mgf of the variable X qw)_pHs 1S given by

Mq(w)—DHS(t;q(W )) :%eB In[yat)] J. eBy sechy dy .
- (12)
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According to [14], we can find that the following integration, which can be easily
worked out with the help of some mathematical packages

IeBy sechy dy =z sect, |B|<1
(13)~~

From (12) and (13), the closed form (11) of mgf of X q@)-DHs Can be obtained

Proposition 6. The first four non-central moments of X .,y pps With w)>0
are given by

1 I_ 1

4= C(W)ln[q(W)] uz—cz(w) ZC()( [a@)1)’,

. 3

o= gy A1 ac per T GICLAI

W= 5 (n[qw)]) T GICII
C'w) 7 C'w) M)

Note that the previous forms in Proposition 6 can be easily worked out with the help
of some mathematical packages. In this case, the first four central moments of

X qw)-psn are

5

’ :01 =, <
Hs Hy C4(W).

1
M:O 1u2_C2(\N)

This implies that the skewness and the excess kurtosis are ¥ =0 and £ =2
respectively.

Using the relation between the cf and the mgf, we can obtain the cf of the
q(w ) -DHS distribution in the following closed form:

21t i Ja@w)]
W oy ons (G A0)) =@ secht,[t|<ZSM, »
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The next proposition gives the closed form of the cgf and the used closed
form to calculate the r-th cumulant K, of the ¢ (W ) -DHS distribution.

Proposition 7. Assume that the variable X ., pns follows the (W )-DHS
distribution with (W ) > 0. The corresponding cgf of this variable is given by

In[a@w)]+In[sect], |t |<%(W)

Kaw)-ons ; d@w)) = ZCW)

(15)
and the r-th cumulant K ., 1 =1,2,3,..., of X ) pus is determined by
d’ ;
kr Z[FKq(w)—DHS(t; qiw ))]t:O =[K((1(\3v)—DHS(t; q(\N))]I:O , T=123,...,
(16)
where

In[Jq@)]+tant,

Kc(ql()w)—DHS(t; qWw))=——7— C( )
K(2<3v) ons(t; AW )) =1+tan’t,

K,y ons; @ )) =2tant (1+tan’t),
K ons; Q@ )) =2(1+tan’t)? +4tan’t (1+tan’t),

KO, ons(t; a@)) =16 (1+tan’t)* tan t +4tan’t (1+tan’t),.

The r-th cumulants K, of X qw)-pHs Tor some values of I' can be easily

worked out with the help of some mathematical packages and they have been
calculated.

Moreover, the moments of X ;) pns are related with the cumulants, i.e.

1
Ky py=Ks, p, =4—[k4 +3(k2)2]

e :k, 2: =
b =p=K, O =1, C'w)

1
C*Ww)

seeey

and so on.
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In the next section, we will illustrate the ML Method to determine a certain
value of the parametric function that maximizes the probability (likelihood) of the

sample data from the g (W ) -DHS distribution.

5. Maximum Likelihood Parameter Estimation

To obtain the MLE for the parameter ¢ (W ) for the q (W )-DHS distribution, start
with the pdf of the g (W ) -DHS distribution which is given in (5).

Suppose that X, X ,,..., X are an iid random sample from a g )-DHS
distribution. Then the likelihood function is given by

n

L (0 X0 X, [ 0)) =C ) 0"20) T [Lexp(2) + o )exp(-Z20
i-1 2 2 17)

with @ = @(X, ;W ). The log-likelihood function is
(W)=r@w))=—~InC*wW)qw) —iln[exp(m)+q(w yexp(—Z20)].
2 =) 2 2 (18)

Taking the derivative of the log-likelihood function with respect to W and setting it
equals zero yields

T T

Cw)atw) i

- - Q‘)sechq(w)(
2C'w)gw)+CWw)g'w) =

[ tanhy,,, (*2) +0'@ ) exp(- "

¢A

Y)]l=n,
2 (19)
with @ =C'(W)x, +D'W). Solving (19) iteratively, then the MLE
GW)=qg@) can be obtained.

6. Application

Here we give an example as a particular case of the mentioned deformed distribution
and explain most of the obtained results for this case.

Let X )-ons be @ continuous random variable which follows the g )-DHS

distribution with the parametric function (W )=expW). We consider
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. In this case we can easily find that the pdf of coshw)x +3 @=¢(x,w)

given by, X expw )—DHS

expw /2)

f :exp )=
exp(W)—DHs(gp p( )) ZSeCh(W)

T
echexp(w)(Tgo); X,w eR,

and the cdf of X exp(w )_DHs 1S

1 1 . T
oo )-ons (@5 exp ) = St ;arctan [exp(-w /2) sinh,,q( 7¢)],

€.

with the critical value

x €XP(w)-DHS :sech(W) [ g (arcsinh[tan (7z' (%—0{)) )+V% )—3] )
T

a

where P[X >x&PW)DHS -1 Fexo@)-ors (X SRSy — o, @ e(0,1).

We can find that, the expectation of the eXpW )-DHS variable

exp(w )-DHS (the mode, the median and the 1%t non-central moment) and also the

X

squared variable X ezxp(w y-oms (the 2" non-central moment) are given respectively
by 4 =wsechw) /7 and p =[1+w?/z*]sech’Ww ). Moreover, the
variance of this variable is o>=sech’(w ). Also, The mgf function of the

X exp)_prs 1S given by

t w sechw
Mexp(w )—DHS(t; exp(W )) = Sec (t) exp[f()]! |t | < 4

2 sech(w)

The 3 and 4™ non-central moments of the variable X expw)_DHs Can be

obtained as

w=[3w /z+w?/7°1sech®*w) and g =[5+6w?/z*+w*/ 7" sech’@).



Using a Parametric Function to Study the Deformation of the Hyperbolic... yay

Thus, the first four central moments of the variable X qw)-psH Can be also
derived and the results are
=0, 1, =0”=sech’W), 1, =0, 44, =5.sech* (W) . Then we find that
y=0 and £ =2. According to the forms (14) and (15), the cf and cgf of the
exp(w ) -DHS distribution are given respectively in the following forms:

it.w sech
W, ) ons (t €XPEW)) =SeCh (1) exp[f(w)] ,

Kexp(w )-DHS (t; expiw)) =In[sec(t)] +M ’
V4

with |t | < By using the last form of the cgf , we can find that:

T
2 sech(w )

w sech(w)

Kg()p(w )-DHS (t ; exp(W )) = +1tan (t) '

and Kéig(w y-ons(ts exp@w ), k =2,3,4,..., asin Proposition 7. Moreover, the
moments of X .,y pys are related with the cumulants,

H=p=kK,, o=, =sech’W).k,, 1=K,

u, =sech*@w) [k, +3(k,)], ..., and so on.

Finally, by solving the following nonlinear system in W iteratively,

1 i . T, TQ, o
PO X; .sinh(w ) tanh Z 70y pexp(— === +w )sech Dl=n,
ST ol SIONG0) ta (E) xp(= b ) sechy, (CEL)

with ¢ =cosh@w ) x; +3 and ¢/ =sinh@w ).x,, i =1,2,...,n, one

can obtain W and thus the MLE of (W ) = cosh@ )is q(w ) =cosh ).

Different densities for the eXp(W ) -DHS distribution with expw ) >1 and
their corresponding densities with eXp(w ) <1 for some values of W are plotted in
Figure 1. Moreover, Figure 2 illustrates the pdf for the eXp(W ) -DHS distribution
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with expw )=1. The derivative of the unimodal pdf of exp(w )-DHS
distributions is explained in Figure 3.

7. Conclusions

This paper discussed the construction of a family of the (W )-DHS distributions
which can be considered as a corresponding extension of a family of the q -DHS

distributions. We defined the q(W ) -deformed hyperbolic functions which have
been implemented by applying a deformation by introducing a positive real valued
parametric function. We studied the effect of this introduced parametric (W )

function in compare with the previous studies on the hyperbolic secant distribution.
Here, we introduced the deformation parametric function (W ) as a factor of the
exponential decay part of the HS distribution. Moreover, we considered a
differentiable real valued function @ = @(X ,W ) instead of the random variable

with positive partial X . We assumed that this function is linear function in X

derivative with respect to X .We found that the constructed family of the (W )-
DHS distributions is unimodal. In general, it has variance with value not equals 1.
We noted also that the derived closed forms of the corresponding mgf, cf, cgf and
score function for the (W )-DHS distributions depend on (W) and the

derivative C (W) of @ . Furthermore, some main properties of this constructed
family of deformed distributions were discussed and we have noted that their
moments exist. Moreover, there is unique value of their mean, median and mode
which still also as a function of the deformation parametric (W ) and C (W ). The
skewness and excess kurtosis of these constructed distributions are still respectively
equal to O and 2. The ML method to determine the MLE for the parameter g (W )
has been illustrated and we obtained a nonlinear system which can be solved
iteratively but by using high processing systems of computers. A particular case of
the (| (W ) -DHS distributions has been presented.
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