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1. Introduction 

Nonlinear partial differential equations (NLPDEs) of integer order are widely used 

as models to describe complex physical phenomena in various field of science such 

as fluid mechanics, plasma physics, optical fibers, biology, solid-state physics, 

chemical kinematics, and chemical physics. In the research of the theory of 

NLPDEs, searching for more explicit exact solutions to NLPDEs is one of the most 

fundamental and significant studies in recent years. With the help of computerized 

symbolic computation, much work has focused on the various extensions and 

applications of the known algebraic methods to construct the solutions to NLPDEs. 

There has been a variety of powerful methods. For example, these methods include 

the sine-cosine function method, tanh function method, projective Ricatti method, 

( '/ )G G -expansion method, Lucas Ricatti method and Jacobi elliptic function 

method [1- 9].  He and Wu [10] proposed a straightforward and concise method, 

called exp-function method [11- 16], to obtain generalized solitary wave solutions of 

nonlinear PDEs.  

Fractional differential equations (FDEs) involving fractional derivatives are 

the generalization of the classical differential equations of integer order. Fractional 

derivatives are useful in describing the memory and hereditary properties materials 

and processes. FDEs are widely used as models to express much important natural 

science such as chemistry, biology, mathematics, communication and particularly in 

almost all branches of physics. There are different kinds of fractional integration and 

differentiation operators. Searching for numerical and analytical solutions of FDEs 

has been a subject of intense study in recent years [17- 20]. There are different kinds 

of fractional integration and differentiation operators. The most famous one is the 

Riemann-Liouville definition [21], which has been used in various fields of science 

and engineering successfully, but this definition leads to the result that constant 

function differentiation is not zero. Caputo put definitions which give zero value for 

fractional differentiation of constant function, but these definitions require that the 

function should be smooth and differentiable [17- 18]. Recently, Jumarie derived 

definitions for the fractional integral and derivative called modified Riemann-

Liouville [22- 25], which are suitable for continuous and non-differentiable 

functions and give differentiation of a constant function equal to zero. The modified 

Riemann-Liouville fractional definitions are used effectively in many different 

problems [26- 30]. In the literature, there are many effective methods to treat FDEs 

such as the Adomian decomposition method [31, 32], the variational iteration 

method [33], the homotopy perturbation method, the differential transform method, 

the finite difference method, the finite element method, the exponential function 

method [34, 35], the fractional sub-equation method [36- 39], the ( '/ )G G -

expansion method [40, 41] and the first integral method [42]. Based on Jumarie’s 

modified Riemann-Liouville derivative and the fractional Riccati equation 
2( ) ( ) ,xD F x F x = +  Zhang and Zhang in [36] introduced the sub-equation method 

for solving nonlinear time fractional biological population model and (4+1)-
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dimensional space-time fractional Fokas equation. Guo et al [37] improved the sub-

equation method, they obtained the analytical solutions of the space-time fractional 

Whitham-Broer-Kaup and generalized Hirota-Satsuma coupled KdV equations by 

introducing a new general ansätz. By extending the fractional Riccati equation [36] 

to the more general form 2( ) ( ) ,xD F x A B F x = +  Abdel-Salam and Yousif [28] 

presented the fractional Riccati expansion method to obtain exact solutions of the 

space-time fractional Korteweg-de Vries equation, the space-time fractional RLW 

equation, the space-time fractional Boussinesq equation, and the space-time 

fractional Klein-Gordon equation. In addition, Li et al [43] extended fractional 

Riccati expansion method for solving the time fractional Burgers equation and the 

space-time fractional Cahn-Hilliard equation. Abdel-Salam et al [29] generalized the 

fractional Riccati expansion method to solve fractional differential equations with 

variable coefficients. Recently, Abdel-Salam and Al-Muhiameed [44] introduced the 

fractional mapping method by solving the fractional elliptic equation 
2 4( ) ( ) ( )xD F x A B F x C F x = + +  and studied the space-time fractional combined KdV-

mKdV equation. In addition, Abdel-Salam and Jazmati introduced the triple 

fractional Riccati expansion method to solve the nonlinear FDEs [45].  In this paper, the 

improved exp-function method were used to solve FDEs. The analytic solutions of the 

space-time fractional Kaup–Kupershmidt equation, the space-time fractional shallow 

water equation, and the space-time fractional Boussinesq equation are obtained. 

The structure of this paper is as follows: some basic definitions of the 

fractional calculus and the description of the improved exp-function method 

introduced in section 2. In section 3, space-time fractional Kaup–Kupershmidt 

equation, space-time fractional shallow water equation, and space-time fractional 

Boussinesq equation are studied. In the last section, some conclusions are given. 

 

2. Description of the method 

In this section we present the improved exp-method to construct exact analytical 

solutions of nonlinear FDEs with the modified Riemann–Liouville derivative 

defined by Jumarie [22- 25] 
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which has merits over the original one, for example, the  -order derivative of a 

constant is zero. Some properties of the Jumarie’s modified Riemann–Liouville 

derivative are 

( 1)
, 0,

( 1 )
xD x x   


 

− +
= 
 + −

                                     (2) 

( ( )) ( ),x xD c f x c D f x =                                                                 (3) 

[ ( ) ( )] ( ) ( ) ( ) ( ),x x xD f x g x g x D f x f x D g x  = +                                     (4) 

'[ ( )] [ ( )] ( ),x g xD f g x f g x D g x =                                                       (5) 

'[ ( )] [ ( )]( ) ,x g xD f g x D f g x g  =                                                      (6) 

where c  is constant. The formulas 4 - 6 follow from the fractional Leibniz rule and 

the fractional Barrow’s formula. That is direct results of the equality 

( ) ( 1) ( )x xD f x D f x   + , which holds for non-differentiable functions. We 

present the main steps of this method as follows: 

Suppose that the nonlinear FDE, say in two variables x  and t , is given by: 

2 2( , , , , , ...) 0, 0 1,t x t xP u D u D u D u D u    =                   (7) 

where ,t xD u D u 
  and yD u  are Jumarie’s modified Riemann–Liouville 

derivatives of u , ( , )u u x t= is an unknown function, P  is a polynomial in u and 

its various partial derivatives, other wise , a suitable transformation can transform 

equation (7) into such equation. The exp-function method for single-wave solution 

depend on the assumption that equation (7) has solution in the form 

0
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where , , ik a and jb are unknown constants to be determined and p , q  are 

positive integers that could be freely chosen.  

Substituting equation (8) into the FDE (7), the left-hand side of equation (7) 

converted into a polynomial in exp-function. Equating each coefficient of the exp-

function to zero gives system of algebraic equations. Solving the set of equations, 

we can obtain the exact solution of equation (7).  
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3. Applications 

In order to illustrate the effectiveness of the method, examples of mathematical and 

physical interests are chosen as follows:  

 

3.1. The Kaup–Kupershmidt equation 

The corresponding equation is the space-time fractional Kaup–Kupershmidt 

equation, for the internal solitary waves in shallow seas and atmosphere dust-

acoustic solitary waves and ion acoustic waves in plasmas with negative ions, 

5 3 2 220 50 80 , 0 1,t x x x x xD u D u u D u D u D u u D u      = − − +        (9) 

which is a transformed generalization of the Kaup–Kupershmidt equation 

220 50 80 .t xxxxx xxx x xx xu u uu u u u u= − − +                                   (10) 

That is the nonlinear fifth-order partial differential equation; it is the first 

equation in a hierarchy of integrable equations with Lax operator 
3 2x x xu u +  + .  It 

has properties similar (but not identical) to those of the better-known KdV hierarchy in 

which the Lax operator has order two. In order to solve equation (9) by the improved 

exp-function method, we use the traveling wave transformation ( , ) ( ),u x t u =   

,
(1 ) (1 )

k x t 


 
= +
 +  +

 based on this transformation for the terms in (9) containing 

fractional derivative, such as ,tD u ,xD u 2 ,xD u
…, using (3) and (5) where 

( , )u x t  is a smooth and differentiable function, one can obtain that 

2 2
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t t
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x x x x x

D u u D u

D u u D k u

D u D D u D k u k u D k u

 

 

    

  

 

 

= =

= =

= = = =

                   (11) 

then, equation (9) is reduced to the following nonlinear FODE: 

5 (5) 2' 20 ''' 50 ' '' 80 ',u k u u u u u u u = − − +                                    (12) 

where primes denote derivatives with respect to  . Now we study the following 

cases: 

case 1: 2, 2 :p q= =  

According to the improved exp-function method, the solution of equation (12) in 

this case can be written as:  
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2
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Substituting (13) into equation (12), equating to zero the coefficients of all 

powers of  e  yields a set of algebraic equations. Solving the resultant algebraic 

system for the unknowns 0 1 2 0 1, , , , , ,k a a a b b and 2b , we obtain the solution 

sets 

0 1 2 0 1 2

1 1
1, 11, , 5, , 1, 2, 1.

2 2
k a a a b b b= = = = − = = = =        (14)  

0 1 2 0 1 2

1 1 5 1
1, , , , , 1, 2, 1.

16 16 8 16
k a a a b b b= = = = − = = = =     (15) 

Thus, the solutions of the space-time fractional Kaup–Kupershmidt equation 

take the form 

2

1 2

1 10 11
, ,

2(1 2 ) (1 ) (1 )

e e x t
u

e e

   

 


 

− +
= = +

+ +  +  +
                 (16) 

2

2 2

1 10
, ,

16(1 2 ) (1 ) 16 (1 )

e e x t
u

e e

   

 


 

− +
= = +

+ +  +  +
                 (17) 

To understand the effect of the fractional order  , we graph equation (16) 

with different value of  .  Figure 1 shows the solution (16) in 3-dimension when 

the values of 0.25, 0.5, 0.75,1 = . It has observed that the amplitude of the 

wave increased as the values of the fractional order derivative increase. 
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Figure 1: Evolutional behavior of 1u  with: (a) 0.25; =  (b) 0.5; = (c) 0.75; =  (d) 1. =  

 

case 2: 3, 3:p q= =  

According to the improved exp-function method, the solution of equation 

(12) in this case can be written as:  

2 3

0 1 2 3

2 3

0 1 2 3

( ) , ,
(1 ) (1 )

a a e a e a e k x t
u
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 
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+ + +  +  +
     (18) 

Substituting (13) into equation (12), equating to zero the coefficients of all powers 

of  e  yields a set of algebraic equations. Solving the resultant algebraic system for 

the unknowns 0 1 2 3 0 1 2, , , , , , , ,k a a a a b b b and 3b , we obtain the solution set 
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2 2

2 2 2
0 0 1 2 3 1 3

5 1
1, 11, 0, , , , , 1.

8 2 2 4

b b b
k a b a a a b b= = = = = = − = = =     (19) 

2 2

2 2 2
0 0 1 2 3 1 3
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1, , 0, , , , , 1.

16 64 16 16 4

b b b
k a b a a a b b= = = = = = − = = =    (20) 

Thus, the solutions of the space-time fractional Kaup–Kupershmidt equation take 

the form  

2 2 3

2 2
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2 2 3
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16( 4 4 ) (1 ) 16 (1 )

b e b e e x t
u

b e b e e
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   (17) 

When 1 = , then the results are similar to those obtained by El-Sabbagh et al [64] 

 

3.2 The generalized shallow water equation 

Consider the generalized shallow water equation 

0,xxxt x xt t xx xt xxu r u u su u u u+ + − − =                                       (18) 

where r  and s  are arbitrary nonzero constants. The shallow water wave equations 

describe the evolution of incompressible flow, neglecting density change along the 

depth. The shallow water wave equations are applicable to cases where the 

horizontal scale of the flow is much bigger than the depth of fluid. The shallow 

water equations have been extensively used for a wide variety of coastal 

phenomena, such as tide-currents, pollutant- dispersion storm-surges, tsunami-wave 

propagation. The space-time fractional shallow water equation, which is a 

transformed generalization of the shallow water equation, is defined as follows: 

3 2 2 0, 0 1x t x x t t x x t xD D u rD uD D u sD uD u D D u D u          + + − − =   , (19) 

where ( , ),u u x t r=  , s  are arbitrary constants and   is the fractional order 

derivative. In order to solve equation (15) by the improved exp-function method, we 

use the traveling wave transformation ( , ) ( ),u x t u = ,
(1 ) (1 )

k x t 


 
= +
 +  +

 based 

on this transformation, equation (9) is reduced to the following nonlinear FODE: 

3 (4) 2 2( ) ' '' '' '' 0,k u k r s u u ku k u  + + − − =                                 (20) 

where the primes denote derivatives with respect to  . Now we study the following 

cases: 
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case 1: 2, 2 :p q= =  

According to the improved exp-function method, the solution of equation 

(20) in this case can be written as:  

2

0 1 2

2

0 1 2

( ) , ,
(1 ) (1 )

a a e a e k x t
u

b b e b e

   

 


 

 
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= = +

+ +  +  +
           (21) 

Substituting (21) into equation (20), equating to zero the coefficients of all 

powers of  e  yields a set of algebraic equations. Solving the resultant algebraic 

system for the unknowns 0 1 2 0 1, , , , , ,k a a a b b and 2b , we obtain the solution set 

0 2
1 1 0 2

[ 24 ( )]1
1, , 0, , 1.

3 ( )

b a r s
k a b a b

r s


− + +
= = = = = =

+
             (22) 

Thus, the solutions of the space-time fractional shallow water equation take 

the form 

2

0 2 0
11 2

0

24 ( )[ ]
( ) , ,

( )[ ] (1 ) 3 (1 )

b a r s b e x t
u

r s b e

  


 

 

− + + +
= = +

+ +  +  +
   (23) 

To understand the effect of the fractional order  , we graph equation (23) 

with different value of  .  Figure 2 shows the solution (23) in 3-dimension when 

the values of 0.25, 0.5, 0.75,1 = , with selection of parameters 

0 21, 2, 1b a r s= = = = . It has observed that the amplitude of the wave increased 

as the values of the fractional order derivative increase. 
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Figure 2: Evolutional behavior of 1u  with
0 21, 2, 1b a r s= = = = : (a) 0.25; =  (b) 0.5; =

(c) 0.75; =  (d) 1. =  

 

case 2: 3, 3:p q= =  

According to the improved exp-function method, the solution of equation 

(20) in this case can be written as:  

2 3

0 1 2 3

2 3

0 1 2 3

( ) , ,
(1 ) (1 )

a a e a e a e k x t
u

b b e b e b e

    

  


 

 

+ + +
= = +

+ + +  +  +
     (24) 

Substituting (24) into equation (20), equating to zero the coefficients of all 

powers of  e  yields a set of algebraic equations. Solving the resultant algebraic 

system for the unknowns 0 1 2 3 0 1 2, , , , , , , ,k a a a a b b b and 3b , we obtain the 

solution sets 
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1 3
0 2 0 2 1 3

[ 24 ( )]1
1, , 0, , 1.

3 ( )

b a r s
k a a b b a b

r s


− + +
= = = = = = = =

+
  (25) 

0 3
1 2 1 2 0 3

[ 36 ( )]1
1, , 0, , 1.

8 ( )

b a r s
k a a b b a b

r s


− + +
= = = = = = = =

+
        (26) 

Thus, the solutions of the space-time fractional shallow water equation take the form 

3

1 3 1
12 3

1

24 ( )[ ]
( ) , ,

( )[ ] (1 ) 3 (1 )

b e a r s b e e x t
u

r s b e e

    

 
 

 

− + + +
= = +

+ +  +  +
     (27) 

3

0 3 0
13 3

0

36 ( )[ ]
( ) , .

( )[ ] (1 ) 8 (1 )

b a r s b e x t
u

r s b e

  


 

 

− + + +
= = +

+ +  +  +
      (28) 

When 1 = , then the results are similar to those obtained by El-Sabbagh et al [64] 

 

3.3. The Boussinesq equation 

Consider the Boussinesq equation, 

26( ) 6 0,tt xx xxxx x xxu u u u uu− − − − =                                (29) 

which include the lowest-order effects of nonlinearity and frequency dispersion as 

additions to the simplest non-dispersive linear long wave theory, provide a sound 

and increasingly well-tested basis for the simulation of wave propagation in coastal 

regions. The standard Boussinesq equations for variable water depth were first 

derived by Peregrine (1967), who used depth-averaged velocity as a dependent 

variable. The space-time fractional Boussinesq equation, which is a transformed 

generalization of the Boussinesq equation, is defined as follows: 

2 2 4 26 6 0, 0 1t x x x x xD u D u D u D uD u uD u      − − − − =   ,    (30) 

where ( , ),u u x t=  and   is the fractional order derivative. In order to solve 

equation (30) by the improved exp-function method, we use the traveling wave 

transformation ( , ) ( ),u x t u = ,
(1 ) (1 )

k x t 


 
= +
 +  +

 based on this 

transformation, equation (30) is reduced to the following nonlinear FODE: 

2 2 4 (4) 2 2 2'' '' 6 ' 6 '' 0,u k u k u k u k u u − − − − =                             (31) 

where the primes denote derivatives with respect to  . Now we study the following 

cases: 

case 1: 2, 3:p q= =  
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According to the improved exp-function method, the solution of equation (31) in 

this case can be written as:  

2

0 1 2

2 3

0 1 2 3

( ) , ,
(1 ) (1 )

a a e a e k x t
u

b b e b e b e

   

  


 

 

+ +
= = +

+ + +  +  +
   (32) 

Substituting (32) into equation (31), equating to zero the coefficients of all powers 

of  e  yields a set of algebraic equations. Solving the resultant algebraic system for 

the unknowns 0 1 2 0 1 2, , , , , , ,k a a a b b b and 3b , we obtain the solution set 

2
2 2 2

0 1 0 2 2 1 31 , 0, , , 1.
4

b
k k a a b a k b b b = + = = = = = =    (33) 

Thus, the solutions of the space-time fractional Boussinesq equation take the 

form 

2 2 2

2
21 2 2 3

2 2

4 1
( ) , .

(1 ) (1 )

k b e k x k k t
u

b e b e e

  

  
 

 

+
= = +

+ +  +  +
     (34) 

case 2: 2, 4 :p q= =  

According to the improved exp-function method, the solution of equation 

(31) in this case can be written as:  

2

0 1 2

2 3 4

0 1 2 3 4

( ) , ,
(1 ) (1 )

a a e a e k x t
u

b b e b e b e b e

   

   


 

 

+ +
= = +

+ + + +  +  +
  (35) 

Substituting (35) into equation (31), equating to zero the coefficients of all 

powers of  e  yields a set of algebraic equations. Solving the resultant algebraic 

system for the unknowns 0 1 2 0 1 2 3, , , , , , , ,k a a a b b b b and 4b , we obtain the 

solution set 

2
2 2 2

0 1 1 3 0 2 44 2
1 4 , 0, , , 1.

64 4

a a
k k a a b b b b b

k k
 = + = = = = = = =     (36) 

Thus, the solutions of the space-time fractional Boussinesq equation take the 

form 

2 2

2
22 2

2 32 2

4 2

1 4
( ) , .

(1 ) (1 )

64 4

a e k x k k t
u

a a
e e

k k

  

 

 
 

+
= = +

 +  +
+ +

     (34) 

When 1 = , then the results are similar to those obtained by El-Sabbagh et al [64]. 
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4. Conclusions 

In this paper, the improved exp-function method is presented to find the analytical 

solutions of nonlinear space-time FDEs. Three examples are studied to illustrate the 

efficiency of the method. With the best of our knowledge, some of the obtained 

results are appear for the first time. The improved exp-function method can be 

applied to other FDEs. 
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 الحلول التحليلية للمعادلات التفاضلية غير الخطية الكسرية  
 

 د محمد صالح جزماتي
 جامعة القصيم–كلية العلوم  –قسم الرياضيات  

 

لإيجاد حلول المعادلات التفاضلية  في هذه الورقة البحثية تم تقديم طريقة الدالة الأسية المحسنةالبحث.  ملخص
  تم تطبيق هذه الطريقة في إيجاد حلول بعض المعادلات التفاضلية الكسرية   منظمة.الكسرية غير الخطية بطريقة 

 Space-time fractional Kaup–Kupershmidt equation،  Space-time fractional shallow waterمثل 

equation، and space-time fractional Boussinesq equation.   من خلال هذه الحلول فإن بعض هذه
  النتائج تظهر لأول مرة في هذا البحث.


