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Abstract. In this paper, the improved exp-function method is proposed to solve fractional differential
equations. The method is applied to solve space-time fractional Kaup—Kupershmidt equation, space-time
fractional shallow water equation, and space-time fractional Boussinesq equation. Among these solutions,
some are found for the first time.
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1. Introduction

Nonlinear partial differential equations (NLPDESs) of integer order are widely used
as models to describe complex physical phenomena in various field of science such
as fluid mechanics, plasma physics, optical fibers, biology, solid-state physics,
chemical kinematics, and chemical physics. In the research of the theory of
NLPDEs, searching for more explicit exact solutions to NLPDEs is one of the most
fundamental and significant studies in recent years. With the help of computerized
symbolic computation, much work has focused on the various extensions and
applications of the known algebraic methods to construct the solutions to NLPDEsS.
There has been a variety of powerful methods. For example, these methods include
the sine-cosine function method, tanh function method, projective Ricatti method,
(G'1G) -expansion method, Lucas Ricatti method and Jacobi elliptic function

method [1- 9]. He and Wu [10] proposed a straightforward and concise method,
called exp-function method [11- 16], to obtain generalized solitary wave solutions of
nonlinear PDEs.

Fractional differential equations (FDESs) involving fractional derivatives are
the generalization of the classical differential equations of integer order. Fractional
derivatives are useful in describing the memory and hereditary properties materials
and processes. FDEs are widely used as models to express much important natural
science such as chemistry, biology, mathematics, communication and particularly in
almost all branches of physics. There are different kinds of fractional integration and
differentiation operators. Searching for numerical and analytical solutions of FDEs
has been a subject of intense study in recent years [17- 20]. There are different kinds
of fractional integration and differentiation operators. The most famous one is the
Riemann-Liouville definition [21], which has been used in various fields of science
and engineering successfully, but this definition leads to the result that constant
function differentiation is not zero. Caputo put definitions which give zero value for
fractional differentiation of constant function, but these definitions require that the
function should be smooth and differentiable [17- 18]. Recently, Jumarie derived
definitions for the fractional integral and derivative called modified Riemann-
Liouville [22- 25], which are suitable for continuous and non-differentiable
functions and give differentiation of a constant function equal to zero. The modified
Riemann-Liouville fractional definitions are used effectively in many different
problems [26- 30]. In the literature, there are many effective methods to treat FDEs
such as the Adomian decomposition method [31, 32], the variational iteration
method [33], the homotopy perturbation method, the differential transform method,
the finite difference method, the finite element method, the exponential function

method [34, 35], the fractional sub-equation method [36- 39], the (G'/G)-

expansion method [40, 41] and the first integral method [42]. Based on Jumarie’s
modified Riemann-Liouville derivative and the fractional Riccati equation
DYF(x) = o+ F(x)?, Zhang and Zhang in [36] introduced the sub-equation method

for solving nonlinear time fractional biological population model and (4+1)-
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dimensional space-time fractional Fokas equation. Guo et al [37] improved the sub-
equation method, they obtained the analytical solutions of the space-time fractional
Whitham-Broer-Kaup and generalized Hirota-Satsuma coupled KdV equations by
introducing a new general ansitz. By extending the fractional Riccati equation [36]
to the more general form D*F(x)=A+BF(x)?, Abdel-Salam and Yousif [28]

presented the fractional Riccati expansion method to obtain exact solutions of the
space-time fractional Korteweg-de Vries equation, the space-time fractional RLW
equation, the space-time fractional Boussinesq equation, and the space-time
fractional Klein-Gordon equation. In addition, Li et al [43] extended fractional
Riccati expansion method for solving the time fractional Burgers equation and the
space-time fractional Cahn-Hilliard equation. Abdel-Salam et al [29] generalized the
fractional Riccati expansion method to solve fractional differential equations with
variable coefficients. Recently, Abdel-Salam and Al-Muhiameed [44] introduced the
fractional mapping method by solving the fractional elliptic equation
DZF(x) :\/A+B F(x)?+CF(x)* and studied the space-time fractional combined KdV-

mKdV equation. In addition, Abdel-Salam and Jazmati introduced the triple
fractional Riccati expansion method to solve the nonlinear FDES [45]. In this paper, the
improved exp-function method were used to solve FDEs. The analytic solutions of the
space-time fractional Kaup—Kupershmidt equation, the space-time fractional shallow
water equation, and the space-time fractional Boussinesq equation are obtained.

The structure of this paper is as follows: some basic definitions of the
fractional calculus and the description of the improved exp-function method
introduced in section 2. In section 3, space-time fractional Kaup—Kupershmidt
equation, space-time fractional shallow water equation, and space-time fractional
Boussinesq equation are studied. In the last section, some conclusions are given.

2. Description of the method

In this section we present the improved exp-method to construct exact analytical
solutions of nonlinear FDEs with the modified Riemann—Liouville derivative
defined by Jumarie [22- 25]

m j( —&) (&)~ F(0)]d¢,
a<0

« 1 dy (1)
D7 f (x) = 7j (&) - f(0)]dé, O<a<l
F{-a) dxs n<a<n+l1 n>1,
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which has merits over the original one, for example, the ¢ -order derivative of a
constant is zero. Some properties of the Jumarie’s modified Riemann—Liouville
derivative are

f7=%x”, 7 >0, &)

D5 (c f(x))=c Dy f(x), 3)
DT ()91 =g(x)D5 f (x)+ f (x)Dg(x), @)
Dy f[g()]1 = f,[g()1D{ g(x), ®)

Dy f[g(x)]=D; f[9(x)1(g,)”, (6)

where C is constant. The formulas 4 - 6 follow from the fractional Leibniz rule and
the fractional Barrow’s formula. That is direct results of the equality

DJf (x)=T'(x+1)D,f (x), which holds for non-differentiable functions. We
present the main steps of this method as follows:
Suppose that the nonlinear FDE, say in two variables X and 1, is given by:

P(u, D“u,Du, D?“u, D*“u, ..)=0, O<a<l, (7)

where Dfu, Dfu  and D{u are Jumarie’s modified Riemann—Liouville

derivatives of U, U =uU(X, t) is an unknown function, P is a polynomial in u and
its various partial derivatives, other wise , a suitable transformation can transform
equation (7) into such equation. The exp-function method for single-wave solution
depend on the assumption that equation (7) has solution in the form

p
Z:aiei.f a a

Ut =u(@) =t o KX et @
ib-ej‘f Il+a) T(l+a)

where K, @, @;and b;are unknown constants to be determined and p, ¢ are
positive integers that could be freely chosen.

Substituting equation (8) into the FDE (7), the left-hand side of equation (7)
converted into a polynomial in exp-function. Equating each coefficient of the exp-
function to zero gives system of algebraic equations. Solving the set of equations,
we can obtain the exact solution of equation (7).
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3. Applications

In order to illustrate the effectiveness of the method, examples of mathematical and
physical interests are chosen as follows:

3.1. The Kaup-Kupershmidt equation

The corresponding equation is the space-time fractional Kaup—Kupershmidt
equation, for the internal solitary waves in shallow seas and atmosphere dust-
acoustic solitary waves and ion acoustic waves in plasmas with negative ions,

D“u =D}*u—20u D¥*u—50D¢ u D*“u+80u’D’u, O<a<l (9)
which is a transformed generalization of the Kaup—Kupershmidt equation

u, =u, —20uu_ —50u, u +80u’u,. (10)

That is the nonlinear fifth-order partial differential equation; it is the first

equation in a hierarchy of integrable equations with Lax operator 8i +2u0, +u, . It

has properties similar (but not identical) to those of the better-known KdV hierarchy in
which the Lax operator has order two. In order to solve equation (9) by the improved
exp-function method, we use the traveling wave transformation U(X, t) =u(&),

__kx* ot based on this transformation for the terms in (9) containing
I'l+a) TO+ea)

fractional derivative, such as D u, D?u, DU, ..., using (3) and (5) where
u(x, t) is asmooth and differentiable function, one can obtain that
Diu()=u'Df¢é=wu’,
Dyu(§)=u'D;&=ku’, (11)
DXu=DZ(Dfu(é)) =D (ku)=ku"Ds&E=ku",...,
then, equation (9) is reduced to the following nonlinear FODE:
ou'=k°u® —20uu"-50u'u"+80u", (12)

where primes denote derivatives with respect to & . Now we study the following
cases:
casel: p=2, q=2:

According to the improved exp-function method, the solution of equation (12) in
this case can be written as:
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a,+a e +a,e” - kx*  ot”
b, +b, e +b,e* I'l+a) T'l+a)

Substituting (13) into equation (12), equating to zero the coefficients of all
powers of e yields a set of algebraic equations. Solving the resultant algebraic
system for the unknowns K, @, a,,a,,a,,b,,b,and b,, we obtain the solution
sets

u(g) =

(13)

k=1 =11, a(,:%, a, =5, azzg, by=1 b=2 b=1 (14)

1 1 5 1
k:]., w=—, =—, =——, a =—, b :l, :2, b :1. (15)
160 X716 T g BT ™ . 2
Thus, the solutions of the space-time fractional Kaup—Kupershmidt equation
take the form

1-10e° +e* X“ 11t*
W = SE o &= + : (16)
2(1+2e° + e%) IFl+a) T'(l+a)
1-10e° +e* X“ t“
4 a7

u2= z 2z , = + ,
16(1+2e° + e%) I'l+a) 16T(1+a)

To understand the effect of the fractional order o, we graph equation (16)
with different value of « . Figure 1 shows the solution (16) in 3-dimension when
the values of a=0.25, 0.5, 0.75,1. It has observed that the amplitude of the
wave increased as the values of the fractional order derivative increase.
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Figl Fyth

fighe

Figure 1: Evolutional behavior of U; with: @) o = 0.25; (b) ¢ = 0.5; (¢c) ¢ = 0.75; (d) o =1.

case2: p=3, q=3:

According to the improved exp-function method, the solution of equation
(12) in this case can be written as:

a,+a e +a,e* +ae* . kx* . ot”
b, +b e +b,e* +b,e* ’ Il+a) Tl+a)

Substituting (13) into equation (12), equating to zero the coefficients of all powers

u(g) =

(18)

of €° yields a set of algebraic equations. Solving the resultant algebraic system for
the unknowns K, @, a,,8,,8,,a,,b,,b,,b,and b, we obtain the solution set
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b2 5h. 1 b?
k:l, (0:11, a0=b0=0, a1=§2, a2:_72, 3325, bl:ZZl b3:1 (19)
1 b? 5b. 1 b?
k=1 w=—, a,=h, =0, 3 =2, a,=——2, a,=—, b=-=2, b =1 (20
@ 1 BT™ Y TR T by 4 3

Thus, the solutions of the space-time fractional Kaup—Kupershmidt equation take
the form

b’e —20b, e +4e* x“ 11t°
3= 2.2 28 36y ! § = + , (16)
2(bye” +4b, e +4e™) I'l+a) I'l+a)
2,76 2& 3¢ a a
bye- —20b, e™ +4e £ X t 17)

= , = + .
* 16(b%e* +4b, e* +4e*) Il+a) 16 T(1+a)

When ¢ =1, then the results are similar to those obtained by El-Sabbagh et al [64]

3.2 The generalized shallow water equation
Consider the generalized shallow water equation

U, +ru.u,+suu, —u,—u, =0, (18)
where I and S are arbitrary nonzero constants. The shallow water wave equations
describe the evolution of incompressible flow, neglecting density change along the
depth. The shallow water wave equations are applicable to cases where the
horizontal scale of the flow is much bigger than the depth of fluid. The shallow
water equations have been extensively used for a wide variety of coastal
phenomena, such as tide-currents, pollutant- dispersion storm-surges, tsunami-wave
propagation. The space-time fractional shallow water equation, which is a
transformed generalization of the shallow water equation, is defined as follows:

D¥Dfu+rDuD¢Dfu+sDfuD* u—D¢Dfu—D*u =0, O<a<1,(19)

where U=U(X,t), r , S are arbitrary constants and ¢ is the fractional order
derivative. In order to solve equation (15) by the improved exp-function method, we

use the traveling wave transformation U(X, t) =u(¢), Fo kx* ot based
I+a) Tl+a)’
on this transformation, equation (9) is reduced to the following nonlinear FODE:

ok U™ + ok 2(r +s)u'u"—wku "k u" =0, (20)

where the primes denote derivatives with respect to & . Now we study the following
cases:
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casel: p=2, q=2:

According to the improved exp-function method, the solution of equation
(20) in this case can be written as:

a,+a e +a,e” - kx* ot
b, +b, e +b,e* Fl+a) T'l+a)’

u(g) =

(1)

Substituting (21) into equation (20), equating to zero the coefficients of all
powers of e yields a set of algebraic equations. Solving the resultant algebraic
system for the unknowns K, @, a,,&,,a,,b,,0,and b, , we obtain the solution set
_ by[-24+a,(r+s)]

(r+s)

kzl,a):%, a,=b =0, a, b, =1. (22)

Thus, the solutions of the space-time fractional shallow water equation take
the form

—24b, +a,(r +s)[b, +e*] X“ t”

, &= + , (23
(r+s)[b, + e*] Fl+a) 3I(l+a)

un(f) =

To understand the effect of the fractional order &, we graph equation (23)
with different value of « . Figure 2 shows the solution (23) in 3-dimension when
the values of «a=0.25,0.5 0.751, with selection of parameters
b, =1a, =2, r=s=1. It has observed that the amplitude of the wave increased
as the values of the fractional order derivative increase.
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Fig.2-a Fig.2-b Fig2-c

Figure 2: Evolutional behavior of U withh =1,a, =2, r=s=1:(a) @ = 0.25; (b)x =0.5;
© =075 d) a=1.

case2: p=3, q=3:

According to the improved exp-function method, the solution of equation
(20) in this case can be written as:

a,+a e +a,e* +ae* - kx* ot
b, +b e +b,e* +b,e* Il+a) I'l+a)’

u(g) = (24)

Substituting (24) into equation (20), equating to zero the coefficients of all
powers of e yields a set of algebraic equations. Solving the resultant algebraic
system for the unknowns K, @, a,,8,,a,,a,,,,b,,b,and b;, we obtain the
solution sets
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kzl,wzz, a,=a,=b,=h, =0, aizhl[—24+a3(r+s)]’ b,=1. (25)

(r+s)
— — 1 —a —h =h = — bo[_36+as(r +S)] — 26
k_l,a)—g, a=a,=hb=b =0 a r+9) , b=1.  (26)

Thus, the solutions of the space-time fractional shallow water equation take the form

—24b1e5+a3(r+s)[blef+e3§]’ . S e
(r +s)[be + e*] Fl+a) 3T(l+a)

U, (5) =

—360, +a,(r +s)[b, +e*] X* t*

(r+s)b, +€%] Srwre et 2

U, (5) =

When o =1, then the results are similar to those obtained by EI-Sabbagh et al [64]

3.3. The Boussinesq equation
Consider the Boussinesq equation,

u, —u, —u, —6(u)*-6uu, =0, (29)
which include the lowest-order effects of nonlinearity and frequency dispersion as
additions to the simplest non-dispersive linear long wave theory, provide a sound
and increasingly well-tested basis for the simulation of wave propagation in coastal
regions. The standard Boussinesq equations for variable water depth were first
derived by Peregrine (1967), who used depth-averaged velocity as a dependent
variable. The space-time fractional Boussinesq equation, which is a transformed
generalization of the Boussinesq equation, is defined as follows:

D?“u—D?*u—D;“u-6D“uDu—6uD>* u =0, O<a<l, (30)

where U=U(X,t), and « is the fractional order derivative. In order to solve
equation (30) by the improved exp-function method, we use the traveling wave

transformation  U(X, t) =u(&), pokxt ot based on this

I'l+a) T'l+a)’
transformation, equation (30) is reduced to the following nonlinear FODE:

ou"-ku"-k*u® —6ku"?-6kuu"=0, (81

where the primes denote derivatives with respect to & . Now we study the following
cases:

casel: p=2, q=3:
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According to the improved exp-function method, the solution of equation (31) in
this case can be written as:

a,+a e +a,e” . kx* ot
b, +b e +b,e* +b,e*’ IFl+a) T'l+a)’
Substituting (32) into equation (31), equating to zero the coefficients of all powers

of e° yields a set of algebraic equations. Solving the resultant algebraic system for
the unknowns K, @, a,,a,,8,,0,,0,,b, and b, we obtain the solution set

u(g) =

(32)

by

o=kyJl+k*, a,=a =h =0, a,=k’b,, b= i b,=1. (33)

Thus, the solutions of the space-time fractional Boussinesq equation take the
form

0 (&) = 4k?b,e* _ kx® +k\/1+k2t“ -
2 bZe’ +h,e* + ¥’ Il+a) T@+a)

case2: p=2, q=4:

According to the improved exp-function method, the solution of equation
(31) in this case can be written as:

(24

a, +a,e° +a,e* _ kx* ot
b, +b e° +b,e* +h,e* +b,e* I'l+a) Tl+a)

u(g) = (35)

Substituting (35) into equation (31), equating to zero the coefficients of all
powers of e yields a set of algebraic equations. Solving the resultant algebraic
system for the unknowns K, m, a,,8,,a,,0,,0b,,b,,b,and b,, we obtain the
solution set

2
a, a

2 p =
64k* 2 4k?

Thus, the solutions of the space-time fractional Boussinesq equation take the
form

w=k1+4k?, a,=a =h =h,=0, b, = b, =1. (36)

0, () = a,e” ‘o kx* K1+ 4K t° (34)
% a22 4 B2 g2 o3 , I'l+a) Irl+a)
64k*  4k®

When or =1, then the results are similar to those obtained by El-Sabbagh et al [64].
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4. Conclusions

In this paper, the improved exp-function method is presented to find the analytical
solutions of nonlinear space-time FDEs. Three examples are studied to illustrate the
efficiency of the method. With the best of our knowledge, some of the obtained
results are appear for the first time. The improved exp-function method can be
applied to other FDEs.
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