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Abstract. This paper investigates the existence and nonexistence of positive solutions for nonlinear
higher order boundary value problem. This can be achieved with the help of suitable theorems by means
of the fixed point theory for studying a nonlinear real functions and continuous differential equation in the
Banach space of a bounded and closed interval. We show that the mentioned 4™ order differential
equation has at least one positive solution.
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1.Introduction

To study the existence and nonexistence of a positive solution for the following
higher order boundary value problem with the help of a suitable theorems, we show
the solvability nonlinear 4" order differential equation. On the other hand, the
existent results of positive solutions for integer order differential equations have
been studied by several researchers (see[8-11] and others references), but, as far as
we know, only a few papers consider the BVP for higher order nonlinear
differential equations in the Banach space of real functions and continuous on a
bounded and closed interval, (see[1,3,5], and others references). So, the aim of this
paper is to fill this gap. In this paper we obtain the existence and nonexistence of a
positive solution for the BVP (3.1) and (3.2) in the Banach space. The results
presented in this paper seem to be new and original. They generalize several results
obtained up till now in the study of nonlinear differential equations of several types.

2.Notation, definition and auxiliary results
Theorem 2.1 [Agarwal et.al [2], and Li, S [4]]
Assume that U is a relatively open subset of convex set K in Banach space E. Let
N :U — K be a compact map with 0 € U .Then either
(i) N has a fixed point in U ;or
(i)Thereisa u eU andad € (0,1)suchthat u = AN U.

Definition 2.1 An operator is called completely continuous if it is continuous and
maps bounded sets into pre-compacts.

Definition 2.2 Let E be a real Banach space. A nonempty closed convex set
K < E is called cone of E if it satisfies the following conditions:

(i) Xe K,o=0impliessox € K;
(i) x e K,—x e Kimplies X =0.

3. Main results

In this section,we will study the existence and nonexistence of positive solutions for
thenonlinear boundary value problem:

u“ () —a(t) f(t,ut)=0, a<t<b (3.1)
u(@) =u(b) =u"(b) =u"(b) =0, 3.2)

Theorem 3.1.Under conditions (3.2), equation (3.1) has a unique solution.
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Proof: Applying the Laplace transform to equation (3.1) we get
s*t(s) —s®u(0) —s?u’(0) —s u"(0) —u"(0) = y(s) (3.3)

Where U(S)and Y(S) is the Laplace transform of u(t)and y(t) respectively.
Laplace inversion of Eq.(3.4) gives the final solution as:

s*U(s) = s*u(0) +s?u’(0) +s u”(0) +u"(0) + y(s)
5 u(0) L2 u’(0) LS u’(0) N u"(0) N y(s)

u(s)=s

u(t) = A+Bt+C—+E— j(t S)sy(s)ds

2
[(a=s)’
0= A+Ba+C?+E§-([ 5 Ye)s
2 3
0=A+Bb+Cb—+E— I(b s) y(s)ds
203
a’-b* _a’-b® 1 f(a-s)’ 1 tb-s)’
) 2!(a—b)_E3!(a—b)_(a_b)j 3 y(s)ds+(a_b)£ g Ve

Bz‘zﬁ ISV()dS 3,(3 jy()s— — T‘a;ffy(s)du
(alb)f(b 3_3) y(s)ds
;: bz) 2 sy(s)ds - ( ajy( s+ _b)ai(a;f)s y(s)ds -
(aib) az s v y(s)ds_ig Sy(s)d“g! y(S)dS—I(a;S)g y
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ut) = 2|( ajsy(s)ds—3'( a_[y(s)ds fb)aj (3’3!5) y(s)ds—

1 (b—s) ta-s)®
(a_ b) aJ' y(s)ds ——_[sy(s)ds +—II y(s)ds—J' 3 y(s)ds—

;( jtsy( )dS+3l( b)IY( )ds— J't(a 5)° y(s)ds+ J‘t(b 5) y(s)ds—
| tz—,sy(s)ds— jt [y j ¢ ‘3 9 y(s)ds.

0 &

u(t)=

(a t) j sf (t,u(s))ds — 2

(a t)j fuEds = (a—t)J:‘ (a ’3!3)3 f(t,u(s))ds -

2|( 31(

(a*b)
—i(a ;!S) f(t,u(s))ds+£ (t ‘;) f(t,u(s))ds

(a—t)Jo'(b 3!5) f(t,u(s))ds—%{sf(t,u(s))dw 3!t )lf(t,u(s))ds

The proof is complete.
Defining T:X > Xas:

Tu(t) =

(a t)jsf (t,u(s))ds —

2l( ) (a t)_[f(tu s))ds +

(a t)J- (a-— s)

3|(
(b- S)

( f(t,u(s))ds — ( (a t)j

+ T_,t)g f (t,u(s))ds - !% f (t,u(s))ds + ! t _3! f(t,u(s))ds

£ (t,u(s))ds —@i sf (t, u(s))ds

Where X=C[0,1] is the Banach space endowed with the supper norm. We have the
following result for operator T.

Lemma 3.1 Assume that f :[a,b]x R — R is continuous function, then T is
completely continuous operator.

Proof: It is easy to see that T is  continuous. For
ueM ={ue X;|u|<I, I -0} we
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a? —p® 8
21( (a t)j sf(t,u(s))ds — ( b)(a—t)‘([f(t,u(s))ds+
( f(t,u(s))ds—
Tu(t) = @ —t7):
(_b) o .([sf(t,u(s))ds
+ ;t )jf(t,u(s))ds—j(a;!s) f(t,u(s))ds+£(t_3!s) f(t,u(s))ds
\Tu(t)\_ZI( (a t)j s|f (t, u(s))\ds+ b)(a—t)_([\f(t,u(s))\ds+
(a-s)® 1 “(b-s)°
(a_b)(a-t)l 3 \f(t,u(s))\ds+(a_b)(a-t)l 3 | (t,u(s))ds +
%js\f(t,u(s))\dwr (a ; )j £[(t, u(s))|ds +
+i(a‘s)3 \f(t,u(s))\ds+j(t =S £ tu(s))lds
Tu(t) < 2|( )L(a t)j ds+3|( )(a t)LJ'ds+
! L(a-t)j(a 5)” ds+ L(a—t)_[(b 5)" gsy (&1 )Ljsds 549
(a-b) K (a—b) K] 2

3 3 b a 3 t 3
+MLjd5+ Lj.ﬁds_f, LIMdS
3 3 .
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b2 s2]”  a®-bl a

Tu (t)\ ~b) L(a—t)[zl 36D (a-t)L[s]s +

1 La t){(a s)* TJF 1 L t){(b s)* } (az—tz)l{sz}b
(a—b) 4 | (a-b) . 21 2 |,
+7(as —t9) L[s] + I{(a—s)“}a + L{(t _8)4}

3 a | 4 |

_@-b)L, @-b)L, 1 ~

= @@ ){ 2} @a-n) @V >( t){ 4'} (35)
7( - ){ } (a—t)l_{}_(a—t)l_[b]_ i_LL
(a—b) ) 2 @) VTR

where L = | f(t, u(t))| +1,

0<t<1 HuH<l

So T(M) is bounded. Next we
Ve >0t <t, €[0]].

) )

I
ﬂ<{25}h-k<ﬁ t,2-t7<n,  t2-tP<y, @ +tY)<u

shall show the equicontinuity of

2(2)e
6Lb?

&

7|

2A(2)@-b)e
6(a’

Aa-h)e
—b?)b?L"6(a’

4(a-b)s
—b*)Lb'6L(a* +b*)

Lb

}' (3.6)

We have
a? —b? b
m ¢ )Jsf t,u(s))ds — = T ~t )j f(t,u(s))ds +
1 (a- S)
- b) 1)J' f(t,u(s))ds —
[Tu(t,) - Tu(t,)| = - )3 (t% —t%)}
S 27t
o]0 - o
+gﬁé?il£f@JKﬁMS—lgiéQ*fﬁﬂ“9m3+£gjfl’ﬂtu“»m
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Tutt) Tl (2')(b);( 1){2} ((Zr)(b); b+ tl)h‘:L
T e HJ
)Tt e 7 T bl g
(aEb)p{ty:}+<z'L){w}+<37%)[b]+Z”

ZL'(?z—b))[bZ] L’i :E))[3] LLE?(;:kt);)‘)’”(2|){ } bl

<£+£+£+£+£+£ <8 3.7
%6666 6 &7

Thus T(M) is equicontinuous. The Arzela-Ascoli theorem implies that the
operator T is completely continuous.
Theorem 3.2 Assume that f :[0,1]]JXR — Ris continuous function, and there

1
exist constants 0<c, < max(a), C, > 0,such that

| f (t,u(t))| < Cl|u| +C, for all t €[0,1]. Then the boundary value problem (3.1)
and (3.2) has a solution.

Proof: Following [6, 7,10], we will apply the nonlinear alternative theorem to prove
that T has one fixed point.

LetQ) = {u S X;||u|| < R},be open subset of X , where

R > [6{b22 Qc,,bQc,,+2Qc,, % Qc,,bQc, ,+2QCZH :

a? —b? 0+ (a2 -t?) {aﬁ—b3 (a_t)+(a3—t3)}

Q<Lya @ 2 | 3@-b) 3
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a” +t

a+b o

We suppose that there is a point U € &Qand ¢, € (0,1) such that u =Tu so, for
U € oQ, we have:

3.8)

a b3 b
2|( ( —t)jsf(t u(s))ds— 3a-05) (a—t)_([f(t,u(s))ds+
ja- S) f(t, u(s))ds — (3.9)
Tu(o)= - oy
(a_b) f(t,u(s))ds —T£ sf(t,u(s))ds
(ag%w f(t,u(s))ds—jf (a ;!5)3 f(t, u(s))ds + I(t_;)a f(t, u(s))ds
3 b
Tu(t)| < 2'( (a t)js\f(t u(s))\ds+ b)(a—t)!\f(t,u(s))\ds+
((a—t)j(a_s) | (t,u(s))|ds + (3.10)
( ( —t)j(b s)° If(t, u(s))\ds+ t)js\f(t u(s))ds
+3‘It)£ f (t,u(s))ds+£(_3!) f (t,u(s))\ds+_|.%\ f (t,u(s))|ds
Tu(t)s;z ‘_2 (a—t)is(clu(s)+c2)ds+3?(3 bs) (a- t)j (C.Ju(s)|+ ¢, )ds +
(a b) ! (cl\u(s +c,)ds + (3.11)
(a b) )J: =s)’ (c,Ju(s)|+c,)ds + a’ tz)':fs(clu(s +c,)ds
+(a3?:t )I(clu(s +c2)ds+::f(a 9’ (cfu(s)|+c, ds+j s) (c,Ju(s)|+c,)ds
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a3
Tu(t) < 2'( )( —t){ (cu(s)+cz} 3o )(a tb(e|u(s)+c,)f+

1@
o t){ . (clu(s)+c2)}+

PN (X (@’ -t*) [b®
(a—b)(a t){ 2 (clu(s)+c2)}+ 5 { (c, u(s)+cz}

(@ 33t ){b(c u(s)|+ )+ {(ay (Clu(s)+cz)}+() Gu)+e,)

Tu(t){ @ —t )H(Clu(s)+c )}

b (), @) (3.12)
[3!(:;1—b)(a Vg }{b(°1”(5)+02)}+

W( - ){a +b (clu(s)+c2)} {a s+, )}

Tu(t) < Q{% (clu(s)|+ cz)} +

Qb(efus)+e)l+le )+ e+ (e u(s) +¢,)]

Tu()| < Q{b;(clu(s)}wb;cz + Qe ju(s)[f+Qbe, +2Q(cu(s) -+ 2Qc,
<—+—4—+—+—+—=R, (3.13)

which implies that ||T||¢ R =||u|| that is a contraction. Then the nonlinear

alternative theorem implies that T has a fixed point U € §_2 that is , problem(3.1)
and (3.2) has a solution U € €.

Finally, we give an example to illustrate the results obtained in this paper.
Example: For the boundary value problem

ul(t) =

3.14
248 (3149
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By using Eg. (3.1) with boundary condition (3.2) and applying theorem 3.2, we have

1
c,=1< maxa-

We come to the conclusion that problem (3.14) has a solution.

Conclusion

In this paper, the existence and nonexistence of positive solutions for nonlinear
higher order boundary value problem were studied by using the fixed point theory.
We conclude that the mentioned 4™ order differential equation has at least one
positive solution.
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