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1. Introduction:

Matrix differential equations have been widely used in the stability, observability
and controllability theories of differential equations, control theory, communication
systems and many other fields of applied mathematics [1-9], and also recently in the
following linear time- varying system [10-31]:

Ay’ (t) = BER)y(®) + COU() : y(t,) = Yo, t 20, (1-1)
where At)em, is a time-varying singular or non-singular matrix function,
B(t)eM, and C(t) e M,, are time-varying analytic matrix functions, y(t) e M. is
the output vector function and y(t) e M, is the state function vector to be solved
(where m . is denoted by the set of all m x N matrices over the real number R and
when m =n we write \_ instead of van). This system is usually known as a

non-singular (singular) descriptor system or generalized state (semi) system or
system of differential- algebraic equations and plays an important role in many
applications such as in electrical networks, economics, optimization problems,
analysis of control systems, engineering systems, constrained mechanics aircraft and
robot dynamics, biology and large-scale systems [10-15]. The linear time- varying
descriptor system as in (1-1) have been studied and discussed by many researchers
[16-20]. For example, Controllability and observability of this system have been
studied by Wang and Liao [17], Wang [18] and Campbell [19]; the linear of matrix
differential inequalities of descriptor system was established by Inoue [20] and the
stability of linear time-varying descriptor system has been discussed in [21-27].
Some special cases of the linear time-varying system as in (1-1) have been also
investigated in [28-31]. For example, the stability for the special case of system (1-
1) when B(t)=B, C(t)=Cand Agt)=A are constant matrices has been discussed

in [27-29] and also the stability analysis for the special case of system (1-1) when
B(t+T)=B(t), C(t+T)=C(t)are periodically time-varying matrices with period

Tand A(t) = Ais a constant matrix has been studied in [24,29]. Finally, the
optimal control of system as in (1-1) has been investigated in [30-31].

In addition, the topic of fractional calculus has attracted many researchers
because of its several applications in various fields of applied sciences, physics and
economics. For a detail survey with collections of applications in various fields, see
for example [32-43] and numerous real-life problems are also modeled
mathematically by systems of fractional differential equations [36,38-40,42,44-53].
Since, there are many definitions of fractional derivative of order o > 0 and most
of them used an integral or summation or limit form [e.g., 32,36,41,43,47,50-57].
One of the important and familiar definition for fractional derivative is Caputo
operator which is defined by:
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t (n)
y*(t)=D"y() = 1""D"y(t) = F(nl_ 3 | (tfs)(f)m ds. (2

where ¢ >0,t>0and n—-1<a<n(neN).

Note that fractional derivative of f (X) in the Caputo sense is defined for
O<a<las

com 1 1Y)
D y(t)—r(l_a) ! (=9 ds. (1-3)

Caputo’s definition has the advantage of dealing property with initial value
problems in which the initial conditions are given in terms of the field variables and
their integer order which is the case most physical processes.

In the present paper, we present the general exact solutions of the singular
and non-singular fractional time-varying descriptor system in Caputo sense based on
the Kronecker product and vector-operator with two illustrated examples.

2. Preliminaries and Basic Concepts

In this section, we study some important basic definitions and their properties
related to the Kronecker product and Mittag-Leffler function on matrices that will be
useful later in our investigation of the solutions of the linear fractional time-varying
descriptor systems.

Definition 2.1. LetA=(a,)eM,, and B=(b,)eM,, be two rectangular

i
matrices. Then the Kronecker product of A and B is defined by [1-8,58-64]:
A®B=(a,B) €M

ij mp,nq * (2'1)

Definition 2. 2. Let A= (aij ) e M, , be arectangular matrix. Then the vector-
operator of A is defined by [1-8,58-64]:

VecA=(a11 ay ...a,a,a, ..4a a, ay ... &, )T eM (2-2)

m2 *°° mn,1’

Lemma. 2.1. Let A,B,C,Dand X be compatible matrices in orders. Then we
have [1-3, 7, 58-64].

(i) Vec(AXB) = (B" ® AVecX , (2-3)
(i) (A® B)(C ® D) = AC ® BD, (2-4)
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(iii) If f is analytic function on the region containing the eigenvalues of Ae M
such that f (A) exist. Then

f(A®1)=f(A®I, and (I, @A) =1 ® f(A). (25
Definition 2. 3. The one-parameter Mittag-Leffler function E, (X) and Mittag-
Leffler matrix function E_, (At”) are defined for & >0 by [ 32,41,50,51,55,65] :

0 Akak

E, ()= Zr(k and E_(At")= Zr(k D (2-6)

where A€ M is a matrix of order nxn and I'(.) is the Gamma function.

Lemma. 2.2. Let A€ M be amatrix of order nxn and let {Xl, Xy iy, Xm} and
{yl, Youree, ym}be the eigenvectors corresponding to the eigenvalues
{/11,22,~~-,lm} of A and A", respectively. Then the spectral decomposition of

E, (A) and E_ (At”) are given, respectively, for & > Oby [55]:

E,(A)=> %Y E,(4) and E,(At")=> %Yy E,(4t%), (@7

k=0 k=0
The list of nice properties for Mittag-Leffler matrix E_ (A) can be found

in [55], and the most important properties for Mittag-Leffler matrix E_ (A) that
will be used in our study are given below [55].

Theorem. 2.1. Let A,Be M, and |, be an identity matrix of order nxn.
Then for o > 0, we have [55]:

() If A=diag(a;,a,,,  -,a,,), then
E, (A) =diag(E, (a,,), E, (8), - E, @m)). (2-8)
(i) E,(A+B)=E_(A)E,(B)ifandonly if AB =BA, (2-9)

(iii) E,(A®1,)=E_(A)®Il,and E, (I, ®A)=1,®E_(A). (2-10)
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Lemma. 2.3. Let H(t) € M be a given matrix function, u(t) € M, , be a given

vector, and Y(t) € M, be the unknown vector to be solved. Then the unique
solution of the following fractional differential system [50,51,55]:

y @) =H@®)y®)+u() : y0) =y, (2-11)

is given by

y(©) =E, (HOU)Y, + [, (HOE-2)" p(2)dz.  (212)

3. Main Results

In this Section, we present the general exact solutions of the linear singular and non-
singular fractional time-varying descriptor systems in Caputo sense based on the
Kronecker product and vector-operator with two illustrated examples.

Problem 3.1. (Linear Singular Fractional Time-Varying Descriptor System)
The linear singular fractional time-varying descriptor system is formulated by

A)y” (t) =B(t)y)+Cu(t) : yO0O)=y,, t>0, >0 (3-1)
where A(t) € M, is a time-varying singular matrix function, B(t) € M, and
Ct)yeM

output vector function and y(t) € M, is the state function vector to be solved.

are time-varying analytic matrix functions, u(t) € Mm,l is the

n,m

For system (3-1), suppose that the constant invertible matrices M and N € M |
such that:

A(t) — M —l|:I g') 8:|N -1 , B(t) — M 1|:Bll(t) BlZ (t):|N -1 ’

BZl (t) BZZ (t)

G e
Ct)=M {Cz (t)} and Y(t) = NL/Z (t)} . (3-2)

This system is restricted equivalent to:
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yr (1) =By (1) Y, (1) + B, () y, (t) + C, (tu(t),
0=B, 1)y, () + By )y, () +C,()u(t). (3-3)

Note that the necessary and sufficient condition for the existence of the solution of a
system (3-1) is that B, (t) is invertible.

General Solutions of Problem 3.1

Since B, (t) is invertible and from equation 2 of (3-3) we get:

Y, (t) = —Bo (t)B, (t)y, () - B,C, (t)u(t). (3-4)

Substitute this equation in the first equation of (3-3), we get:

y; (1) =Sg, (©)y, (1) + Ru(t), (3-5)
where

S By (t) =By, () — By, (1) Bgzl (t)B (1) (3-6)

Bll (t) BlZ (t):|

is called the Schur complement of By, (t) in a matrix [
- B,.(t) By(t)

Now by letting
R(t) = By, (1)B,, (1)C, (t) + C, (1), 3-7)
and taking Vec(.) of both sides of (3-5), and using (2-3) in Lemma 2.1, we get:
Vee(ys (t)) = Vec(S,_(t)y, (t))+Vec(R@)u(t))

= (1 ® S, (1)) Vec(y, )+ (1 ®R(M)Vec(u(t)).  (38)
Since Y, (t), Yy, (t)and R(t)u(t)are vectors, then Vec(yf‘ (t))= yo(t),
vecly, (©)= v, (©
and Vec(u(t)) = u(t), then the equation as in (3-8) can be represented as:

yi ) =(1®S, )y, ©+(1 ®ROWC). (3-9)
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Now by using Lemma 2.3, then the solution of (3-9) is given by:

¥,(0)
Y, (0)

where S (t) and R(t)are defined as in (3-6) and (3-7), respectively.

(3-10)

KO=E, (1 ®S,, (1) t")N{ }—j.(t ~2)*E, (1 ®5, )t -2 (1 ®R(2)) u(2) iz

For appropriate the order of solutions, we take the Vec(.) of both sides of (3-4) and
then we get:

Vec(y, (1)) = ~Vec(B,: (t)B,, ()Y, (1))~ Vec(B,iC, (hu(t))
Which is equivalent to:
Y,(0)=-(1®B (B, O, - (1 ®BC,OL),  (311)
where Y, (t) is defined as in (3-10).

Hence, Y, (t) and Y, (t) as in (3-10) and (3-11), respectively, are the general exact
solutions of Problem 3.1.

Problem 3.2. (Linear Non-Singular Fractional Time-Varying Descriptor System)

The linear non-singular matrix fractional time-varying descriptor system is
formulated by

AQ)Y “(t) = BOY () +COU ) : Y(0)=Y,, t>0, a>0, (312

where A(t) € M, is a time-varying non-singular matrix function, B(t) e M |
and C(t) € M, are time-varying analytic matrix functions, U (t) € M is the

output matrix function and Y (t) € M is the state function matrix to be solved.

m

Suppose that the constant invertible matrices M and N € M such that:

A(t): M1|:I(t) 0 :|N1 , B(t): M—1|:Bll(t) BlZ(t):|N_1 ,
0 1 B, () By()

] G0 BVAAY,
Cit)=M {Cz(t)} and Y (t) = N[YZ (t)} (3-13)
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This system is restricted equivalent to:
Y, (1) = By ()Y, (1) + By, ()Y, (1) + C, (DU (1),
Y, (1) = By ()Y, (1) + By, ()Y, (1) + C, (DU (). (3-14)

General Solutions of Problem 3.2.
By taking Vec(.) of both sides of (3-14), and using (2-3) in Lemma 2.1, we get:

Vec(Y,# (t)) = Vec(B,, ()Y, (t) + B, ()Y, (t) + C, (U (1))
=(1®By, (1)) Vec(Y, (1) + (1 ®B,, (t)) Vec(Y, (t))+ (1 ®C, (1)) VecU (1)),
Vec(Y,# (t)) = Vec(B,, (t)Y, (t) + By, ()Y, (t) + C, (U (1))

= (1 ®B, (1)) Vec(Y, 1))+ (1 ®B,, (1)) Vec(Y, (1)) + (1 ®C, (t)) VecUt)) (3-15)

This system can be represented as:

{Vec(Yf(t))} [1®B,(t) I®Blz(t)}{Vec(Yl(t))}+{(l ®C, (t)VecU (t))] (3-16)

Veclv# ()| |1 ®B,(t) 1®B, () | Vecv, )| | (1 ©C,t)VecU ()
Suppose that
o [Veclv @) L [1®©B,®) 188,17  [Vecly, ®)],
To- _VeC(Yza (t)):| o= |:| ®B,(t) 1®B, (t)} 0= |:VEC(Y2 (t))

ot | (1 ®CiOVecU ®)],
- {(I ®C, (1) Vec(U (t))}
Now the system as in (3-16) can be rewritten as follows:
T“(M)=HOT®)+DW) © T(0)= N{Yl(O)] (3-17)
Y, (0)

Now by using Lemma 2.3, then the solution of (3-17) is given by:
TM=E,(HO t°) TO+ -2 E,(HONt-2)°) D)z 3-18)

This leads to the following general vector solution of Problem 3.2:

[Vec(Yl (t))} e Hl ®B,() 1®B, (t)} t"} N _{Vec(Yl(O))}

vedY, @) “|[1©BL1t) 1®B,(®) Vec(Y, (0))
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b a-1 1®B,(t) 1®B,(t) @ (I ®C1(Z))\/eC(U (Z)) ' (3-19)
+£(t—z) Eaﬂ. ® B,y (t) |®Bzz(t)} t-2) ] {(l ®C2(t))\/ec(U(Z))} *

The main problem in the solution of Problem 3.3 as in (3-19) is how to compute the

following Mittag-Leffler matrix:
E | ®B,(t) 1®B,(t) _ (3-20)
‘e 821(0 | ®B,, ®

As a special case, if B;;B,, =B,,B,, and B,,B,; = B,,B,,, then the following
matrices: | © By (t) 0 and 0 I ®By, (1) are

0 | ®B,, (1) | ® B, (t) 0
commutative.

Then by (2-9) of Theorem 2.3 and the same procedure in the proof of Theorem 2 in [
55] , we have

E I®B,(t) 1®B,()|)
“ L@BZI(t) I®Bzz(t)} -

E.(1®8, (t)){ E,(1®8B, (I))+2Ea -1® le(t))} E (@8, (t»{ E,(1®8, (t))sza -1® Bn(t))}

E (@8, (t)){Ea(l ®B, (t))—ZEa (-1®B, (t))} E (198, ME&(I ®B, (t))+2Ea -1® Bn(t))}

| QE, (B (t»{' ®F,(B,()-! ®Ea(Bn(t))} |9 (8 (t)>{l ®E,(B,(1)+1® Ea(Bn(t))} (3-21)
B a \P11 2 a \P11 2
h | ® Ea (Bzz (t)){l ® Ea (Blz(t))'; 1® Ea(Bm(t))} 1® EH(B22 (t)>Jl| ® Ea (BIZ (t)); 1® Ea (821(0)}

Now by substituting (3-21) in (3-19), then we get the general solution of this
special case.

Example 3.1. Consider the following linear singular fractional time-varying
descriptor system:

A)y* (t) = B(t)y(t) + C)u(t) : y(0) =y,, t>0, a>0, (322)
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1000 t 000
where 010 o,A(t){'z(t) 0} 0to0o
=N=1,= 0 o] =
0010 0000
0001 000 0
t 010 1
C[Bu®) B,®] [ 1, ] {0t o 1], = [C®] |-t
B(t){Bn(t) Bzz(t):|_|: I, I(t)}_ 1010 C(t){cz(t)_" 1
0101 t
. 1
m(t):{}and 0 :{yl(O)}: 0].
1 y(0) v, |1
0

Since Se, (=1, - 1,1, :Iz(t)={; ﬂ ’ R(t)=—|2|2{_1JJ{_1J:B]

Then the general solutions of this system by using (3-10) and (3-11),
respectively, is given by:

0 =E t o] [t 0].
LU= lo %0 ¢
t“2 0 0 0|

1
a+2 0
_E, 0 t 0 0
0 0 t“* 0 1
0

0 0 0 t*7

0

[1

0| ¢ Lo (Tt o] _Jt o J)o
. +£(t—z) Ea[{o t}@{o J(t—z) ]Odz
0

0

(E,(t?) o 0 o 1
|0 Ef?) o 0o |[|o
oo 0o Ef?) o |[1
o 0 o Et?)] o0
"Ea(tmz)
| o
- Ea(t(uz)
o
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Example 3.2. Consider the following linear non-singular fractional time-varying
descriptor system:

ARQY* (@) =B{)Y(®) : Y(0)=Y,,t>0, >0, (3-23)
1000 t 00O
where \y _ = 01 0 ,A(t):{h(t) 0} _|0t 00
0010 0 0 00t O
0 001 0 0 0t
-t 0 1 O
B.(t) B,(t)] [LA) I, 0 1 0 1| gg Y,(0)
B(t)=| * 12 _ _ ,an Y0:|:1 }
® {&AD BQGJ {IZ |aJ 1 0 -t o0 O=lv.0
0 1 0 1
Since B;,B,, =B,,B,, and B, B,; =B,,B,, , then by applying (3-19), (3-21)

and Theorem 2.1, we get:

{Vec(\(1 (t))} - ﬂlz ®B,(1) |,®l, }tj {VeC(Yl(O))}

VeclY, () ,®1, 1,®B,(t) Vec(Y, (0))

|2 ®Ea(Bu(t)>{lz ®Ea(|2)7 Iz ®Ea(|2)} |2 ®Ea(Bm(t)>{I2 ®Ea(|2))+ Iz ®Ea(|2)}
t(

2 2 )
|2 ®Ea(822(t)){|2 ®Ea(|2); IZ ®Ea(|2)} |2 ®Ea(Bzz(t)>{I2 ®Ea(|2); |2 ®Ea(|2)}

{Vec(vl ) )} .

| Vec(Y, (0)

Now,

Vec(Y, (1) = (1, ® €, (B, )1, @ E, (1,t*)) Vec(v, (0))
= (I ,®E, (B11 (t))Ea (I 2 )ta ) VeC(Yz (0))

=Vec{(E, (B, ))E, (1,X) Y,(0)}
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That is by using (2-9), we have

Yl (t) = (Ea (B11 (t))Ea (I 2 )ta) Yz (O) = {Ea ((Bll (t) + Ea (I 2 ))ta )} Yz (0)

[Ef-t) o
Yl(t)—{ 0 Ea(zt“)}YZ(O)' (3-24)

Similarly, we get that

Rt o
Yz(t)—[ 0 EQ(Zta)}Yl(O)- (3-25)

Hence, the general solutions of (3-23) is given as in (2-24) and (3-25).

4. Conclusion

The general exact solutions of the linear singular and non-singular fractional time-
varying descriptor systems in Caputo sense are presented by a new attractive method
with two illustrated examples. How to find the sufficient conditions, stability,
controllability and observability of these problems require further research.

Acknowledgments. The author expresses his sincere thanks to referees for very
careful reading and helpful suggestion of this paper.
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