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1. Introduction: 

Matrix differential equations have been widely used in the stability, observability 

and controllability theories of differential equations, control theory, communication 

systems and many other fields of applied mathematics [1-9], and also recently in the 

following linear time- varying system [10-31]:  

)()()()()()( / tutCtytBtytA +=  : 00 )( yty = , 0t ,                  (1-1) 

where 
nMtA )(  is a time-varying singular or non-singular matrix function, 

mMtB )(  and 
mnMtC ,)(   are time-varying analytic matrix functions, 

1,)( mMtu   is 

the output vector function  and 
1,)( nMty   is the state function vector to be solved 

(where 
nmM ,
 is denoted by the set of all nm  matrices over the real number R and 

when nm =  we write 
mM  instead  of 

nmM ,
). This system is usually known as a 

non-singular (singular) descriptor system or generalized state (semi) system or 

system of differential- algebraic equations and plays an important role in many 

applications such as in electrical networks, economics, optimization problems, 

analysis of control systems, engineering systems, constrained mechanics aircraft and 

robot dynamics, biology and large-scale systems [10-15]. The linear time- varying 

descriptor system as in (1-1) have been studied and discussed by many researchers 

[16-20]. For example, Controllability and observability of this system have been 

studied by Wang and Liao [17], Wang [18] and Campbell [19]; the linear of  matrix 

differential inequalities of descriptor system was established by Inoue [20] and the 

stability of linear time-varying descriptor system has been  discussed in  [21-27].  

Some special cases of the linear time-varying system as in (1-1) have been also 

investigated in [28-31]. For example, the stability for the special case of system (1-

1)  when BtB =)( , CtC =)( and AtA =)(  are constant matrices has been discussed 

in [27-29] and also the stability analysis for the special case of system (1-1) when 

)()( tBTtB =+ , )()( tCTtC =+ are periodically time-varying matrices with period 

T and AtA =)( is a constant matrix has been studied in [24,29].  Finally, the 

optimal control of system as in (1-1) has been investigated in [30-31]. 

In addition, the topic of fractional calculus has attracted many researchers 

because of its several applications in various fields of applied sciences, physics and 

economics.  For a detail survey with collections of applications in various fields, see 

for example [32-43] and numerous real-life problems are also modeled 

mathematically by systems of fractional differential equations [36,38-40,42,44-53]. 

Since, there are many definitions of fractional derivative of order 0  and most 

of them used an integral or summation or limit form [e.g., 32,36,41,43,47,50-57]. 

One of the important and familiar definition for fractional derivative is Caputo 

operator which is defined by:  
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where  0 , 0t  and  nn − 1  ( n ℕ).  

Note that fractional derivative of )(xf in the Caputo sense is defined for 

10   as 
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Caputo’s definition has the advantage of dealing property with initial value 

problems in which the initial conditions are given in terms of the field variables and 

their integer order which is the case most physical processes.  

In the present paper, we present the general exact solutions of the singular 

and non-singular fractional time-varying descriptor system in Caputo sense based on 

the Kronecker  product and vector-operator with two illustrated examples. 

 

2. Preliminaries and Basic Concepts 

In this section, we study some important basic definitions and their properties 

related to the Kronecker product and Mittag-Leffler function on matrices that will be 

useful later in our investigation of the solutions of the linear fractional time-varying 

descriptor systems.  

Definition 2.1. Let ( )
nmij MaA ,=  and ( ) qpkl MbB ,=  be two rectangular 

matrices. Then the Kronecker product of A  and B  is defined by [1-8,58-64]:  

( )
nqmpijij MBaBA ,=  .                                     (2-1) 

Definition 2. 2.  Let ( )
nmij MaA ,=  be a rectangular matrix. Then the vector-

operator of A is defined by [1-8,58-64]:                                              

( ) 1,212221212111 mn

T

mnnnmm MaaaaaaaaaVecA =  ,       (2-2) 

Lemma. 2.1. Let A , B , C , D and X be compatible matrices in orders. Then we 

have [1-3, 7, 58-64]. 

 (i) VecXABAXBVec T )()( = ,                          (2-3) 

(ii) BDACDCBA = ))(( ,                        (2-4)   
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(iii) If f is analytic function on the region containing the eigenvalues of mMA  

such that )(Af exist. Then 

nn IAfIAf = )()(   and  )()( AfIAIf nn = .         (2-5) 

Definition 2. 3.  The one-parameter Mittag-Leffler function )(xE and Mittag-

Leffler matrix function )( 

 AtE  are defined for 0  by [ 32,41,50,51,55,65] : 




= +
=

0 )1(
)(

k

k

k

t
tE


  and    



= +
=

0 )1(
)(

k

kk

k

tA
AtE






 ,         (2-6)  

where nMA  is a matrix of order nn  and (.)  is the Gamma function.  

Lemma. 2.2. Let nMA  be a matrix of order nn  and let  mxxx ,,, 21   and 

 myyy ,,, 21  be the eigenvectors corresponding to the eigenvalues 

 m ,,, 21   of A  and 
TA , respectively. Then the spectral decomposition of 

)(AE  and )( 
 AtE  are given, respectively, for 0 by [55]: 

)()(
0

k

m

k

T

kk EyxAE  
=

=   and   )()(
0





  tEyxAtE k

m

k

T

kk
=

= ,         (2-7) 

The list of nice properties for Mittag-Leffler matrix )(AE  can be found  

in [55], and the most important properties for Mittag-Leffler matrix )(AE  that 

will be used in our study are given below [55].  

Theorem.  2.1.  Let A , mMB  and nI  be an identity matrix of order nn . 

Then for 0 , we have [55]: 

(i) If ),,,( 2211 mmaaadiagA = , then 

 ( ))(,),(),()( 2211 mmaEaEaEdiagAE  = ,                 (2-8) 

(ii) )()()( BEAEBAE  =+ if and only if BAAB = ,                          (2-9) 

(iii) nn IAEIAE = )()(   and  )()( AEIAIE nn  = .     (2-10) 
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Lemma. 2.3. Let nMtH )(  be a given matrix function, 
1,)( nMtu   be a given 

vector, and  1,)( nMty   be the unknown vector to be solved. Then the unique 

solution of the following fractional differential system  [50,51,55]:  

 

)()()()( tutytHty +=
 : 0)0( yy = ,                           (2-11) 

is given by 

( ) dzzuzttHEztyttHEty

t

)())(()())(()(
0

1

0





 −−+= 

−
.             (2-12) 

 

3. Main Results 

In this Section, we present the general exact solutions of the linear singular and non-

singular fractional time-varying descriptor systems in Caputo sense based on the 

Kronecker  product and vector-operator with two illustrated examples.  

 

Problem 3.1. (Linear Singular Fractional Time-Varying Descriptor System) 

The linear singular fractional time-varying descriptor system is formulated  by 

)()()()()()( tutCtytBtytA +=
 : 0)0( yy = , 0t ,  0          (3-1) 

where nMtA )(  is a time-varying singular matrix function, nMtB )(  and 

mnMtC ,)(   are time-varying analytic matrix functions, 1,)( mMtu   is the 

output vector function  and 1,)( nMty   is the state function vector to be solved.  

For system (3-1), suppose that the constant invertible matrices M  and nMN 

such that:  

11

00

0)(
)( −−









= N

tI
MtA   , 

1

2221

12111

)()(

)()(
)( −−









= N

tBtB

tBtB
MtB  ,                                      









= −

)(

)(
)(

2

11

tC

tC
MtC  and  








=

)(

)(
)(

2

1

ty

ty
Nty .                         (3-2) 

This system is restricted equivalent to:  
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)()()()()()()( 12121111 tutCtytBtytBty ++=
, 

)()()()()()(0 2222121 tutCtytBtytB ++= .                         (3-3) 

Note that the necessary and sufficient condition for the existence of the solution of a 

system (3-1) is that )(22 tB is invertible.  

 

General Solutions of Problem 3.1 

Since )(22 tB is invertible and from equation 2 of  (3-3) we get:  

)()()()()()( 2

1

22121

1

222 tutCBtytBtBty −− −−= .                       (3-4) 

 

Substitute this equation in the first equation of (3-3), we get: 

 

)()()()()( 11 11
tutRtytSty B +=

,                                  (3-5) 

where 

)()()()()( 21

1

22121111
tBtBtBtBtSB

−−=                                 (3-6)      

is called the Schur complement of )(11 tB  in a matrix 








)()(

)()(

2221

1211

tBtB

tBtB
.  

Now by letting  

)()()()()( 12

1

2212 tCtCtBtBtR +−= −
,                             (3-7) 

and taking (.)Vec of both sides of (3-5), and using (2-3) in Lemma 2.1, we get:  

( ) ( ) ( ))()()()()( 11 11
tutRVectytSVectyVec B +=

 

( ) ( ) ( ) ( ))()()()( 111
tuVectRItyVectSI B += .          (3-8)                       

Since )(1 ty
, )(1 ty and )()( tutR are vectors, then ( ) )()( 11 tytyVec  = , 

( )=)(1 tyVec )(1 ty  

and ( )=)(tuVec )(tu , then the equation as in (3-8) can be represented as: 

=)(1 ty  ( ) ( ) )()()()( 111
tutRItytSI B + .                   (3-9)                            
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Now by using Lemma 2.3, then the solution of (3-9) is given by:  
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where )(
11

tS B  and )(tR are defined as in (3-6) and (3-7), respectively.   

For appropriate the order of solutions, we  take the (.)Vec of both sides of (3-4) and 

then we get:   

( ) ( ) ( ))()()()()()( 2

1

22121

1

222 tutCBVectytBtBVectyVec −− −−=  

Which is equivalent to:  

( ) ( ) )()()()()()( 2

1

22121

1

222 tutCBItytBtBIty −− −−= ,              (3-11) 

where )(1 ty  is defined as in (3-10).  

Hence, )(1 ty and )(2 ty as in (3-10) and (3-11), respectively, are the general exact 

solutions of Problem 3.1.  

 

Problem 3.2. (Linear Non-Singular Fractional Time-Varying Descriptor System) 

The linear non-singular matrix fractional time-varying descriptor system is 

formulated  by 

)()()()()()( tUtCtYtBtYtA +=
 : 0)0( YY = , 0t ,  0 ,        (3-12) 

where nMtA )(  is a time-varying non-singular matrix function, mMtB )(  

and mnMtC ,)(   are time-varying analytic matrix functions, mMtU )(  is the 

output matrix function  and mnMtY ,)(   is the state function matrix to be solved. 

Suppose that the constant invertible matrices M  and nMN  such that:  

11

)(0

0)(
)( −−









= N

tI

tI
MtA   , 

1

2221

12111

)()(

)()(
)( −−









= N

tBtB

tBtB
MtB  , 









= −

)(

)(
)(

2

11

tC

tC
MtC  and  








=

)(

)(
)(

2

1

tY

tY
NtY .                     (3-13) 
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This system is restricted equivalent to:  

)()()()()()()( 12121111 tUtCtYtBtYtBtY ++=
, 

)()()()()()()( 22221212 tUtCtYtBtYtBtY ++=
.                   (3-14) 

 

General Solutions of Problem 3.2.   

By taking (.)Vec of both sides of (3-14), and using (2-3) in Lemma 2.1, we get: 

 ( ) ( ))()()()()()()( 12121111 tUtCtYtBtYtBVectYVec ++=
 

( ) ( ) ( ) ( ) ( ) ( ))()()()()()( 1212111 tUVectCItYVectBItYVectBI ++= ,           

( ) ( ))()()()()()()( 22221212 tUtCtYtBtYtBVectYVec ++=
 

( ) ( ) ( ) ( ) ( ) ( ))()()()()()( 2222121 tUVectCItYVectBItYVectBI ++=   (3-15) 

This system can be represented as: 

( )
( )

( )

( )

( ) ( )
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Suppose that  
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 Now the system as in (3-16) can be rewritten as follows:  

                           )()()()( tDtTtHtT +=  :  








= −

)0(

)0(
)0(

2

11

Y

Y
NT .                  (3-17) 

Now by using Lemma 2.3, then the solution of (3-17) is given by:  

( ) ( )dzzDzttHEztTttHEtT

t

)()))((()()0())(()(
0

1 



 −−+= 

− .      (3-18) 

This leads to the following general vector solution of Problem 3.2:         

( )
( )

( )

( )

































=








−

)0(

)0(

)()(

)()(

)(

)(

2

11

2221

1211

2

1

YVec

YVec
Nt

tBItBI

tBItBI
E

tYVec

tYVec 


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The main problem in the solution of Problem 3.3 as in (3-19)  is how to compute the 

following Mittag-Leffler matrix: 

                                               





















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

)()(

)()(

2221

1211
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.                      (3-20) 

As a special case, if 22121211 BBBB =  and 21221121 BBBB = , then the following 

matrices:   





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



)(0

0)(

22

11

tBI

tBI
  and 














0)(

)(0

21

12

tBI

tBI
 are 

commutative.  

Then by (2-9) of Theorem 2.3 and the same procedure in the proof of Theorem 2 in [ 

55] , we have  

=
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
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
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

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

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





















 −+








 −−









 −−
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( ) ( )
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











   (3-21) 

Now by substituting (3-21) in (3-19), then we get the general solution of this 

special case.  

 

Example 3.1.  Consider the following linear singular fractional time-varying 

descriptor system:  

)()()()()()( tutCtytBtytA +=
 : 0)0( yy = , 0t ,  0 ,   (3.22)               
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where 



















===

1000
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4INM
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
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




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2 tI
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Then the general solutions of this system by using (3-10) and (3-11), 

respectively, is given by:  
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Example 3.2.  Consider the following linear non-singular fractional time-varying 

descriptor system:  
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Since 22121211 BBBB =  and 21221121 BBBB =  , then by applying (3-19), (3-21) 

and Theorem 2.1, we get:  
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That is by using (2-9), we have  
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Similarly, we get that                                     
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Hence, the general solutions of  (3-23) is given as in (2-24) and (3-25). 

 

4. Conclusion 

The general exact solutions of the linear singular and non-singular fractional time-

varying descriptor systems in Caputo sense are presented by a new attractive method 

with two illustrated examples. How to find the sufficient conditions, stability, 

controllability and observability of these problems require further research.  
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في هذه الورقة البحثية تم اعادة صياغة أنظمة واصف الوقت المتغيرة الخطية لتشمل الرتب الكسرية مع تقديم الحلول ملخص البحث. 
العامة والمضبوطة للوصف الجديد بشقيها المنفردة وغير المنفردة ضمن تعريف مؤثر كابتو الكسري . اضلفة الى ذلك : قمنا بتقديم بعض 
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