Journal of Natural Sciences and Mathematics
Qassim University, VVol. 10, No. 1, pp 53-60 (January 2017/Rabi Il 1437H.)

On the Existence of Positive Solutions for the 51" Order Differential Equation
for Boundary Value Problems

S. N. Odda

Department of Mathematics, Faculty of Women, Ain Shams University, P.O.Box. 11566, Cairo, Egypt

Abstract. We are considering the problem of solving a nonlinear differential equation in the Banach
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1. INTRODUCTION

This paper investigates the existence and nonexistence of positive solutions
for the following higher order boundary value problem with the help of suitable
theorems in order to show the solvability nonlinear 5™ order differential equation.
On the other hand, the existent results of positive solutions for integer order
differential equations have been studied by several researchers (see[6-9]), but, as far
as we know, only a few papers consider the BVP for higher order nonlinear
differential equations in the Banach space of real functions which are continuous on
a bounded and closed interval, (see[1,3,5]). So, the aim of this paper is to fill this
gap. In this paper, we obtain the existence and nonexistence of positive solution for
the BVP in the Banach space. The results presented in this paper seem to be new and
original. They generalize several results obtained up to now in the study of nonlinear
differential equations of several types.

2.NOTATION, DEFINITION, AND AUXILIARY RESULTS
Theorem 2. 1 [2,4]
Assume that U is a relatively open subset of convex set K in Banach space E. Let
N:U > Kbea compact map with 0 € U . Then either
(i) N has a fixed point in U ;or
(i)Thereisa u e U andad € (0,))suchthat u = A N u.

Definition 2.1 An operator is called completely continuous if it is continuous and
maps bounded sets into precompacts.

Definition 2.2 Let E be a real Banach space. A nonempty closed convex set
K < Eis called cone of E if it satisfies the following conditions:

(i) Xe K,o=0impliesox € K ;

(i) x e K,—x e Kimplies X=0.

3. MAIN RESULT

In this section, we will study the existence and nonexistence of positive
solutions for the nonlinear boundary value problem:

u®(t) = f(t,u(t)), 0<t<1, (3.1)
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u') =u"(0)=u"(0)=u“(0)=0, (3.2)
au(0)+ pu'(0)=0, where «, >0, a+>0 (3.3)

This is equivalent for integral equation;
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Theorem 3.1.Under conditions(3.2)and (3.3),equation(3.1)has a unique solution.

Proof. Applying the Laplace transform to equation (3.1) we get

s°U(s) —s*u(0) —s*u’(0) —s?u”"(0) —su”(0) —u*(0) = y(s) (3.4)
s50(s) — s A+ s° % A—s2u"(0) — su"(0) —u*(0) = y(s)

Where U(S)and y(S)is the Laplace transform of Uu(t)and y(t)
respectively. The laplace inversion of Eq.(3.4) gives the final solution as:

B (-s)’ [, 1=s)°
u(t) :;'([Tf (s,u(s))ols-!tT f (s,u(s))ds
t \ (3.5)
+£% f(s,u(s))ds
The proof is complete.

Defining T : X — X as:



o1 S. N. Odda.

Tu(t) = ﬂj(l s)’ f (s,u(s))ds — jt ) f(s,u(s))ds
(3.6)

j =9 £ (s, u(s))ds

Where X=CJ[0,1] is the Banach space endowed with the supper norm. We have the
following result for operator T.

Lemma 3.1

Assume that f :[0,1]]xR — R is continuous function, then T is completely
continuous operator.

Proof: It is easy to see that T is  continuous. For
ueM ={ueX;|u|<I, -0} we

f(s,u(s))ds—Jl.t (A-s)°

B-s)
- j 3 f (s,u(s))ds

Tu(t)| =

j 9" ¢ (s.u(s))ds
)

ﬁj (A-s)’ | (s,u(s))|ds + j t \f(s u(s))lds + j (t= \f(s u(s))lds
(04 0 3

LLiibiest
a 4 4 51

f(t,u()) +1.

where L =
0<t<1 H =

so T(M) is bounded. Next we shall show the equicontinuity of T(M).
Ve =0t <t, €[0]].

L £5!
Let, < an y
o {ZL} = {ZL}

wehave t,-t, <7, (+t2)=<y then,



On The Existence Of Positive Solutions ... ov
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Thus T(M) is equicontinuous. The Arzela-Ascoli theorem implies that the
operator T is completely continuous.

Theorem 3.2

Assume that f :[0,1]JXR — R is continuous function, and there exist constants
Ao
0<c, <(——, 45, c,>0, such that |f(t,u(t)) <clu+c,

for all t €[0,1]. Then the boundary value problem (3.1), (3.2) and (3.3) has a
solution.

Proof: Following[2,4], we will apply the nonlinear alternative theorem to prove that
T has one fixed point.

LetQ) = {u S X;||u|| < R},be open subset of X, where

R-|6 ﬁcllicl’&,icyicyc_z .
g ~ 4~ 5l 4l " 41 7 5l

We suppose that there is a point U € 0Qand ¢, € (0,1) such that u =Tu . So, for
U € 0Q2, we have:
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+j“;? f(s,u(s))ds

0

<18t uots [ 4t G uos [ s uee
ay 3
sﬁ_l[(l S)3(cl\u(s)\+c )ds+j( t(cl\u(s)\+c )ds+_[( 9)* (C,|u(s)| +c,)ds
aO
s4£ (cju(s)) += (cl\u(s)\)+§(cl\u(s)\)+
+ ic2 102+£cz <E+B+B+B+B+E=R,
4o 4 5! 6 6 6 6 6 6

which implies that ||T|| #R= ||u|| , that is a contraction. Then the nonlinear
alternative theorem implies that T has a fixed point U € §_2 that is , problem (3.1),
(3.2) and (3.3) has a solution U € S_)

Finally, we give an example to illustrate the results obtained in this paper.

Example: For the boundary value problem

2u+1
u’+5

u°(t) =

3.7

By using Eq. (3.1) with boundary condition (3.2) and applying theorem 3.2 with
Ao
a=1 and £ =1. Then we have ¢, < (7,4!,5!) :

We conclude that problem(3.7) has a solution.
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