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1. Introduction 

We introduce the Galerkin method through the classic model diffusion problem in D 

space dimensions, 

 

−𝑑2𝑢

𝑑𝑥2
= 𝑓(𝑥),    0 < 𝑥 < 1,      𝑢(0) = 𝑢(1) = 0.                               (1) 

 

We start the interest for purposes of introduction when the dimension is one. 

We denote 𝑢 to the exact solution of (1) and �̃� to its numerical solution. This is 

known as a two points boundary value problem (BVP)[1,2,3]. For example, this is a 

model of heat diffusion in a rod of length 1, where the end and fixed are at 

temperature 0, and we heat the rod with a driving term 𝑓(𝑥). 

A domain is a bounded open set, which identifies the physical setting of the 

problem. In this case 

𝐼 = (0,1) = {𝑥: 0 < 𝑥 < 1}. 

In this work, we are interested to the one dimensional problem, hence our 

domain will be an open interval 𝐼 =(a,b) ⊂  ℝ . Also, 𝐼 ̅is closure of 𝐼. So if 𝐼 = (a,b), 

then the closure 𝐼=̅ [a,b] and boundary 𝜕𝐼 = {a,b}. 

Consider 𝐿2(𝐼) as the space of measurable functions on open interval 𝐼, with 

inner product 〈𝑓, 𝑔〉 =  ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
1

0
. Hence, ‖𝑓‖ = (∫ 𝑓(𝑥)2𝑑𝑥)1/2 < ∞

1

0
. We 

work in the space 𝐿2(𝐼) as a related space rather than set of continuous functions.  

Consider the well-known space 𝐿2(𝐼 = (0,1)) of square integrable functions 

on 𝐼, it is precisely defined and based on Lebesgue integration theory.  Also, 𝐿2(𝐼) is 

a Hilbert space with norm ‖𝑓‖ = √〈𝑓, 𝑓〉, ∀ 𝑓 ∈ 𝐿2(𝐼) and inner product 〈𝑓, 𝑔〉 =

 ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
1

0
. It is remarkable that ‖𝑓‖ < ∞, ∀ 𝑓, that comes directly from the 

definition of the space, where ∫ 𝑓(𝑥)2𝑑𝑥 < ∞
1

0
. 

We need to assign a meaning to the derivative 𝐼𝑓 of an 𝑓 ∈ 𝐿2(𝐷) even 

though 𝑓 which may not have a derivative in the traditional sense. Consider 𝜑 ∈
𝐶𝑐

∞(𝐼)  is set of infinitely differentiable functions in 𝐼 with support of 𝜑 and denoted 

by  𝑠𝑢𝑝𝑝(𝜑) ⊂ 𝐼 where 

𝑠𝑢𝑝𝑝(𝜑) = {𝑥 ∈ 𝐼: 𝜑(𝑥) ≠ 0̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }. 

We say 𝑣 is the weak derivative of 𝑢 ∈ 𝐿2(𝐼) if 

∫𝑣(𝑥)𝜑(𝑥)𝑑𝑥 = −
𝐷

∫𝑢(𝑥)𝜑(́ 𝑥)𝑑𝑥 
𝐷

      ∀𝜑 ∈ 𝐶𝑐
∞(𝐼)                       (2) 
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We write 𝑣 = �́�𝑢 “generalized derivative of 𝑢”. Similarly, we can define 

𝐷𝛼𝑢 as a function 𝑣 that obeys 

∫𝑣(𝑥)𝜑(𝑥)𝑑𝑥 =
𝐷

(−1)𝛼 ∫𝑢(𝑥)𝜑(𝛼)(𝑥)𝑑𝑥 
𝐷

      ∀𝜑 ∈ 𝐶𝑐
∞(𝐼)   

Note that, if 𝑢(𝑥) is differentiable almost everywhere (roughly, except at a 

finite number of points), it is not true that 𝑢 has a generalized derivative as function 

𝑓: 𝐷𝑓 → ℝ. 

Model diffusion problem 

We look at ways to reformulating 𝐼. There are two important methods. 

(V) Find 𝑢 ∈ 𝐻0
1(𝐼) such that 

∫ 𝐷𝑢𝐷𝜑𝑑𝑥 =
1

0

∫ 𝑓(𝑥)𝜑(𝑥)𝑑𝑥 
1

0

      ∀𝜑 ∈ 𝐻0
1(𝐼)    

V stands for variation. 

(M) Let 𝐹:𝐻0
1(𝐼) → ℝ be  

𝐹(𝑢) =
1

2
∫ (𝐷𝑢)

1
2𝑑𝑥 −

1

0

∫ 𝑓(𝑥)𝑢(𝑥)𝑑𝑥 
1

0

, 

then find minimum for 𝐹 over 𝑢 ∈ 𝐻0
1(𝐼) [12,11]. 

We will now state three important theorems that study in the reformulations 

of the model diffusion problem. 

Theorem 1. Consider 𝑢 ∈ 𝐶2(0,1) such that 

−𝑢𝑥𝑥 = 𝑓(𝑥),    0 < 𝑥 < 1,      𝑢(0) = 𝑢(1) = 0. 

Then, 𝑢 solves (V). Find 𝑢 ∈ 𝐻0
1(𝐼) with 𝐼 =(0,1) such that  

∫ 𝑢𝑥𝜑𝑥𝑑𝑥 =
1

0

∫ 𝑓(𝑥)𝜑(𝑥)𝑑𝑥 
1

0

 

for all test functions 𝜑 ∈ 𝐻0
1(𝐼)[4]. 

Theorem 2. A solution 𝑢 of (V) is equivalent to a solution 𝑢 of (M) with 𝐼 

=(0,1) [4]. 

 

In order to see the existence and uniqueness of solution (V), we develop the 

Riesz representation. Firstly, we define a linear function on a Hilbert space 𝐻 such 

that 𝑙: 𝐻 → ℝ where  

𝑙(𝛼𝑥 + 𝛽𝑦) = 𝛾𝑙(𝑥) + 𝛽𝑙(𝑦), 
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for 𝑥, 𝑦 ∈ 𝐻 and 𝛼, 𝛽 ∈ ℝ. Secondly, a linear function 𝑙 on 𝐻 is bounded if, 

for some 𝑘 > 0, 𝑙(𝑥) ≤ 𝑘‖𝑥‖ for any 𝑥 ∈ 𝐻. Equivalently, 𝑙(𝑥) ≤ 𝑘 for any 𝑥 ∈ 𝐻 

with ‖𝑥‖ = 1. 

 

Theorem 3. (Riesz Representation) Let 𝐻 be a Hilbert space. Every bounded 

linear function 𝑙 on 𝐻 can be written as 

𝑙(𝑥) = 〈𝑥, 𝑦〉, 

for some 𝑦 ∈ 𝐻. Furthermore, 𝑦 is unique [6,10]. 

 

2. Theory 

We drive a large class of numerical method for  

−𝑢𝑥𝑥 = 𝑓(𝑥),      𝑢(0) = 𝑢(1) = 0,                                    (3) 

called the Galerkin method. Recall the weak form and consider 𝑓 ∈ 𝐿2(0,1) 

and 𝑉 = 𝐻0
1(0,1) find 𝑢 ∈ 𝑉 such that 

𝑎(𝑢, 𝜑) = 𝑙(𝜑), 

where 𝑎(𝑢, 𝑣) = ∫ 𝑢𝑥𝑣𝑥𝑑𝑥
1

0
 and 𝑙(𝜑) = ∫ 𝑓 𝜑 𝑑𝑥

1

0
 for all 𝜑 ∈ 𝑉.  

 

The idea is to introduce a finite dimensional subspace 𝑉𝑘 of the infinite 

dimensional space 𝑉. Let �̃� be the solution of (3), then find �̃� ∈ 𝑉𝑘such that  

𝑎(�̃� , 𝜑) = 𝑙(𝜑),                                               (4) 

for all 𝜑 ∈ 𝑉𝑘. The �̃� defined the Galerkin approximation [9].  

 

Let 𝑉𝑘 is equal to span{𝜓1, 𝜓2, … , 𝜓𝑘} where 𝜓𝑘 are under independent basis 

function in 𝑉. For example, let 𝜓1(𝑥) = 𝑥𝑗(1 − 𝑥) for 𝑗 = 1, 2, … , 𝑘. Then 𝜓𝑗(𝑥) 

are smooth and have boundary conditions, and hence 𝑢 ∈ 𝑉𝑘can be written as 

𝑢 = ∑ 𝛼𝑗 𝜓𝑗 ,                                                          (5)

𝑘

𝑗=1

 

for some 𝛼 ∈ ℝ. We seek a linear system that defines 𝛼𝑗. Thus, we substitute 

(5)  into (4) and we get 

𝑎(∑𝛼𝑗 𝜓𝑗 , 𝜑)

𝑘

𝑗=1

= 𝑙(𝜑),      ∀𝜓 ∈ 𝑉𝑘 . 

For the reason 𝑎 is bilinear, the form becomes 



 A study of some new inequalities for Galerkin method…  141 

 

∑𝛼𝑗 𝑎(𝜓𝑗 , 𝜑)

𝑘

𝑗=1

= 𝑙(𝜑) 

Let 𝜓𝑖 = 𝜑, then 

∑ 𝛼𝑗 𝑎(𝜓𝑗 , 𝜓𝑖)

𝑘

𝑗=1

= 𝑙(𝜓𝑖),    𝑖 = 1, 2, … , 𝑘             (6) 

Define a 𝑘 × 𝑘 matrix 𝐴 with entries 𝑎𝑖𝑗 = 𝑎(𝜓𝑗 , 𝜓𝑖) and a vector 𝑏 ∈ ℝ𝑘 

with entries 𝑏𝑖 = 𝑙(𝜓𝑖) and unknown 𝑥 ∈ ℝ𝑘as  

𝑥 = [

𝛼1

𝛼2

⋮
𝛼𝑘

] 

Then the equation (6) can be written as 𝐴𝑥 = 𝑏. In finite element, 𝐴 is the 

stiffness matrix and 𝑏 is the load vector. Let us look at properties of 𝐴 [13]. 

Theorem 4. The stiffness matrix 𝐴 is symmetric and positive definite. 

Proof. 𝑎 is symmetric  

𝑎(𝑢, 𝑣) = ∫ 𝑢𝑥𝑣𝑥𝑑𝑥
1

0

= ∫ 𝑣𝑥𝑢𝑥𝑑𝑥
1

0

= 𝑎(𝑣, 𝑢) 

and hence 𝑎𝑖𝑗 = 𝑎𝑗𝑖 . Also, 𝐴 is positive definite if 

𝑥𝑇𝐴𝑥 > 0, 𝑓𝑜𝑟 𝑥 ≠ 0. 

Thus, 

𝑥𝑇𝐴𝑥 = ∑ ∑ 𝑥𝑗𝑎𝑖𝑗𝑥𝑖

𝑘

𝑖=1

𝑘

𝑗=1

= ∑ ∑ 𝑥𝑗𝑎(𝜓𝑗 , 𝜓𝑖)𝑥𝑖

𝑘

𝑖=1

𝑘

𝑗=1

= ∑ 𝑥𝑗𝑎(∑ 𝑥𝑖𝜓𝑗 , 𝜓𝑖)
𝑘

𝑖=1

𝑘

𝑗=1

= 𝑎(∑ 𝑥𝑖  𝜓𝑖

𝑘

𝑖=1
,∑ 𝑥𝑗𝜓𝑗

𝑘

𝑗=1
)

= 𝑎(�̃�, �̃�)

 

as �̃� = ∑ 𝑥𝑗𝜓𝑗
𝑘
𝑗=1  . Recall, ‖𝑢‖𝐸 = 𝑎(𝑢, 𝑢)1/2 that is so-called " energy 

norm" and a norm on 𝑉. In particular,  

‖𝑢‖𝐸 = 0 ⇔ 𝑢 = 0, 

Hence, 
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𝑥𝑇𝐴𝑥 ⇔ 𝑎(�̃�, �̃�) = 0,

⇔ �̃� = 0,
⇔ 𝑥 = 0,

 

as 𝜓𝑗 are linearly independent. ∎ 

Thus, two consequences, 

• 𝐴 is non-singular and hence Galerkin approximation �̃� is well defined. 

• Special algorithm (such Cholesky and Conjugate Gradient) are available 

to solve. 

Consequently, 𝐴𝑥 = 𝑏 is efficiently. Note that, the minimisation from the 

diffusion problem (M) also leads to numerical method. Now, we look at key 

approximate property of Galerkin method.  

Theorem 5. (Best Approximation) If 𝑢 is solution 𝑎(𝑢, 𝜓) = 𝑙(𝜓),    ∀𝜓 ∈ 𝑉 

 and �̃� solves  

𝑎(�̃�, 𝜓𝑘) = 𝑙(𝜓𝑘),    ∀𝜓𝑘 ∈ 𝑉𝑘.                                      (7) 

Then  

‖𝑢 − �̃�‖𝐸 ≤ ‖𝑢 − 𝜓𝑘‖𝐸 ,   ∀𝜓𝑘 ∈ 𝑉𝑘                                    (8) 

In other words, �̃� is the best way approximating 𝑢 in 𝑉𝑘 (has least error in 

energy norm) [5]. 

Proof. As we know that 𝑉𝑘 ⊂ 𝑉 So, the equation (8) implies 

𝑎(𝑢, 𝜓𝑘) = 𝑙(𝜓𝑘),     

for any 𝜓𝑘 ∈ 𝑉𝑘. Take difference of (7) and (9) 

𝑎(𝑢 − �̃�, 𝜓𝑘) = 0. 

Hence, 𝑢 − �̃� is orthogonal to the space 𝑉𝑘, with respect to 𝑎(. , . ). 

Now,  

‖𝑢 − �̃�‖𝐸
2 = 𝑎(𝑢 − �̃�, 𝑢 − �̃�),

= 𝑎(𝑢 − �̃�, 𝑢) − 𝑎(𝑢 − �̃�, �̃�)
 

Note that by orthogonal property 𝑎(𝑢 − �̃�, �̃�) = 0 as �̃� ∈ 𝑉𝑘. Further, for any  

𝜓 ∈ 𝑉, 𝑎(𝑢 − �̃�, 𝜓𝑘) = 0. Thus, we can replace last term 

‖𝑢 − �̃�‖𝐸
2 = 𝑎(𝑢 − �̃�) − 𝑎(𝑢 − 𝜓𝑘),

= 𝑎(𝑢 − �̃�, 𝑢 − 𝜓𝑘)
 

Now Cauchy-Schwartz inequality says  

𝑎(𝑢, 𝑣) = ∫ 𝑢𝑥𝑣𝑥𝑑𝑥
1

0

≤ ‖𝑢𝑥‖. ‖𝑣𝑥‖ = ‖𝑢‖𝐸 . ‖𝑣‖𝐸 . 
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We have  

‖𝑢 − �̃�‖𝐸
2 ≤ ‖𝑢 − �̃�‖𝐸 . ‖𝑢 − 𝜓𝑘‖𝐸 . 

Divide through to get 

‖𝑢 − �̃�‖𝐸 ≤ ‖𝑢 − 𝜓𝑘‖𝐸 , 

for all 𝜓𝑘 ∈ 𝑉𝑘. ∎ 

Let us look at best choice of 𝑉𝑘. 

Polynomial Basis 

Assume that 𝑉𝑘 = 𝑠𝑝𝑎𝑛{𝑥𝑗(𝑥 − 1): 𝑗 = 1, 2, … , 𝑘} and note that if 𝑢 ∈ 𝑉𝑘, 

then 𝑢(0) = 𝑢(1) = 0, and 𝑢 ∈ 𝐶1(0,1). Hence,  

𝑢 ∈ 𝐻0
1(0,1) = 𝑉 = {𝑢 ∈ 𝐿2(0,1):

𝑑𝑢

𝑑𝑥
∈ 𝐿2(0,1), 𝑢(0) = 𝑢(1) = 0} 

Let us run through an example for clarification. Consider 𝑓(𝑥) = 1 and 𝑘 =
2. Then 𝑉2 = {𝑥(𝑥 − 1), 𝑥2(𝑥 − 1)}. Seek �̃� = 𝛼1𝑥(𝑥 − 1) + 𝛼2𝑥

2(𝑥 − 1) such 

that 𝑎(�̃�, 𝜓) = 𝑙(𝜓2) for any 𝜓2 ∈ 𝑉2. Let us call 𝜑1 = 𝑥(𝑥 − 1) and 𝜑2 =
𝑥2(𝑥 − 1), and hence 

�̃� = 𝛼1𝜑1 + 𝛼2𝜑2 

Substituting 

𝑎(𝛼1𝜓1 + 𝛼2𝜓2,𝜑2) = 𝑙(𝜑2),

𝛼1𝑎(𝜓1, 𝜑2) + 𝛼2𝑎(𝜓2,𝜑2) = 𝑙(𝜑2),
 

Since 𝜓1 = 𝜑1 and 𝜓2 = 𝜑2, then 

𝛼1𝑎(𝜓1, 𝜓1) + 𝛼2𝑎(𝜓1𝜓1) = 𝑙(𝜓1),

𝛼1𝑎(𝜓1, 𝜓2) + 𝛼2𝑎(𝜓2𝜓2) = 𝑙(𝜓2).
 

This is the linear system 𝐴𝑥 = 𝑏 where the stiffness matrix 𝐴 has entries 

𝑎11 = ∫ (
𝑑𝜓1

𝑑𝑥
)2𝑑𝑥

1

0

= ∫ (2𝑥 − 1)2𝑑𝑥
1

0

= 1/3

𝑎12 = ∫ (
𝑑𝜓1

𝑑𝑥

𝑑𝜓2

𝑑𝑥
)𝑑𝑥

1

0

= ∫ (2𝑥 − 1)(3𝑥2 − 2𝑥)𝑑𝑥
1

0

= 1/6

𝑎21 = 𝑎12

𝑎22 = ∫ (
𝑑𝜓2

𝑑𝑥
)2𝑑𝑥

1

0

= ∫ (3𝑥2 − 2𝑥)2𝑑𝑥
1

0

= 2/15,

 

The load vector is 
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𝑏1 = ∫ 𝑓(𝑥)𝜓1𝑑𝑥
1

0

= ∫ (𝑥2 − 𝑥)𝑑𝑥
1

0

= −1/6,

𝑏2 = ∫ 𝑓(𝑥)𝜓2𝑑𝑥
1

0

= ∫ (𝑥3 − 𝑥2)𝑑𝑥
1

0

= −1/12.

 

Hence, the linear system is  

[
1/3 1/6
1/6 2/15

] . [
𝛼1

𝛼2
] = [

−1/6
−1/12

] 

This gives 𝛼1 = −1/2 and 𝛼2 = 0. Thus, �̃� = −1/2𝑥(𝑥 − 1). 

In fact, �̃� = 𝑢 is the true solution. This can be predicted from Best 

Approximation Theorem because 𝑢 ∈ 𝑉2 in the Galerkin approximation picks the 

best approximation to 𝑢 ∈ 𝑉2, which is seriously 𝑢  (‖𝑢 − 𝑢‖𝐸 = 0). It is clear that 

𝑢 ∈ 𝑉2 as −𝑢𝑥𝑥 = 1, and hence 𝑢 quadratic. 

In general, Polynomial basis functions are to be avoided for two reasons:  

• The stiffness matrix is dense (𝑎𝑖𝑗 ≠ 0 for most 𝑖, 𝑗). 

• The condition number of matrix 𝐴 grows rapidly as the dimension 𝑘 is 

increased. It behaves as Hilbert matrix [8]. 

Finite element Basis 

In the model problem (3), we define 𝐷 =(0,1) into a grid 0 < 𝑥0 < 𝑥1 < ⋯ <
𝑥𝑘+1 = 1. Let us assume grid is sparse uniformly 𝑥𝑗+1 − 𝑥𝑗 = ℎ for 𝑗 = 0,1,… , 𝑘. 

Define basis function 𝑁𝑗(𝑥) which is piecewise linear on grid (on each (𝑥𝑗+1, 𝑥𝑗) to 

is linear) such that 

𝑁𝑗(𝑥) = {
1 𝑖𝑓 𝑖 = 𝑗,
0 𝑖𝑓 𝑖 ≠ 𝑗.

 

Note that 𝑁𝑗(𝑥) ∈ 𝐻0
1 for 𝑗 = 0,1, … , 𝑘 because 𝑁𝑗(0) = 𝑁𝑗(1) = 0 and  

𝑑

𝑑𝑥
𝑁𝑗(𝑥𝑖) = {

1/ℎ 𝑥𝑗−1 < 𝑥 < 𝑥𝑗

−1/ℎ 𝑥𝑗 < 𝑥 < 𝑥𝑗+1

0 𝑜𝑡ℎ𝑒𝑟

                           (9) 

Thus, 
𝑑

𝑑𝑥
𝑁𝑗(𝑥𝑖) ∈ 𝐿2(0,1) and 𝑁𝑗(𝑥) are linearly independent.  

Let 𝑉𝑘 = 𝑠𝑝𝑎𝑛 {𝑁1, 𝑁2, … , 𝑁𝑘}, then 𝑉𝑘 has dimension 𝑘 and is a subspace of 

𝑉 = 𝐻0
1(0,1). We often write 𝑉ℎ = 𝑉𝑘 to emphasis grid space ℎ.  Note that 𝑁0, 𝑁𝑘+1 

are not included in 𝑉ℎ. Let us construct the stiffness matrix 𝐴 = 𝑎𝑖𝑗  where 𝑎𝑖𝑗 =

𝑎(𝑁𝑖 , 𝑁𝑗).    

• Case 𝑖 = 𝑗: 

 𝑎𝑖𝑗 = 𝑎(𝑁𝑖 , 𝑁𝑗) = ∫ (
𝑑𝑁𝑖

𝑑𝑥
)2𝑑𝑥

1

0
 for 𝑖 = 0,1, … , 𝑘. Thus, by (9) we get 
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𝑎𝑖𝑗 = ∫ (
1

ℎ
)2𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

= 2/ℎ 

• Case 𝑖 = 𝑗 − 1: 

𝑎𝑖𝑗 = ∫ (
𝑑𝑁𝑖

𝑑𝑥
)(

𝑑𝑁𝑗

𝑑𝑥
)𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

= ∫ (
−1

ℎ
)(

1

ℎ
)𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

=
−1

ℎ
 

• Case 𝑖 = 𝑗 + 1: 

𝑎𝑖𝑗 = 𝑎𝑗𝑖 =
−1

ℎ
 

• Case |𝑖 − 𝑗| > 1: 

Note that 𝑁𝑗(𝑥) = 𝑁𝑗(𝑥) = 0 for all 𝑥. Hence,  𝑎𝑖𝑗 = 0. 

Finally, we have 

𝐴 =
−1

ℎ

[
 
 
 
 
 

2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2 ]

 
 
 
 
 

 

As usual, the matrix is symmetric and positive definite. For the finite element 

basis, the stiffness matrix is sparse [1]. Next, it is important to show that the finite 

element solution converges to the weak solution in the limit ℎ → 0.  

Convergence 

We look at the effect of increasing number 𝑘 of finite element basis function 

on the approximation error. 

Theorem 6. Let 𝑢 be true solution and �̃� be Galerkin approximation in 𝑉ℎ , then 

‖𝑢 − �̃�‖𝐸 ≤ ℎ‖𝑓‖ 

Proof. Let 𝑢∗ denotes to the piecewise linear interpellant of 𝑢 at grid points 

𝑥0, 𝑥1, … , 𝑥𝑘+1. This means 𝑢∗ is linear on (𝑥𝑖 , 𝑥𝑖+1) for 𝑖 = 0,1, … , 𝑘 and 𝑢∗(𝑥𝑖) =
𝑦(𝑥𝑖)  for 𝑖 = 0,1, … , 𝑘. Note that 𝑢∗ ∈ 𝑉ℎ, but 𝑢∗ may not be equal to Galerkin 

finite element solution �̃�. By best approximation 

‖𝑢 − �̃�‖𝐸 ≤ ‖𝑢 − 𝑢∗‖𝐸 

as 𝑢∗ ∈ 𝑉ℎ. Next step, we estimate ‖𝑢 − �̃�‖𝐸 in terms of ℎ. Let 𝑒 = 𝑢 − 𝑢∗, 

then 𝑒(𝑥𝑖) = 0 for 𝑖 = 0,1, … , 𝑘 + 1. By Poincare Inequality, 

∫ 𝜑2𝑑𝑥
1

0

≤ ∫ 𝜑𝑥
2𝑑𝑥

1

0

    𝑖𝑓    𝜑(0) = 𝜑(1) = 0. 
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Change variable and let 𝑦 = 𝑥𝑖 + 𝑥ℎ and hence 𝑑𝑦 = ℎ𝑑𝑥. Thus, when 𝑥 =
0, then 𝑦 = 𝑥𝑖 and when 𝑥 = 1, then 𝑦 = 𝑥𝑖+1. So, 

∫ 𝜑2
𝑑𝑦

ℎ

𝑥𝑖+1

𝑥𝑖−1

≤ ∫ ℎ2𝜑𝑦
2
𝑑𝑦

ℎ

𝑥𝑖+1

𝑥𝑖−1

≤ ℎ ∫ 𝜑𝑦
2
𝑑𝑦

ℎ

𝑥𝑖+1

𝑥𝑖−1

 

Consequently,  

∫ 𝜑2
𝑑𝑦

ℎ

𝑥𝑖+1

𝑥𝑖−1

≤ ℎ2 ∫ 𝜑𝑦
2𝑑𝑦

𝑥𝑖+1

𝑥𝑖−1

 

We can substitute 𝜑 =
𝑑𝑒

𝑑𝑥
. This produces 

∫ (
𝑑𝑒

𝑑𝑥
)2

𝑑𝑥

ℎ

𝑥𝑖+1

𝑥𝑖−1

≤ ℎ2 ∫ (
𝑑2𝑒

𝑑𝑥2
)2𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

 

By integrate, 𝑖 = 0 up to 𝑖 = 𝑘, we get 

∫ (
𝑑𝑒

𝑑𝑥
)2

𝑑𝑥

ℎ

1

0

≤ ℎ2 ∫ (
𝑑2𝑒

𝑑𝑥2
)2𝑑𝑥

1

0

 

Notice, L.H.S is ‖𝑒‖𝐸
2 . Now, 𝑒 = 𝑢 − 𝑢∗ and hence 

𝑑2𝑒

𝑑𝑥2 =
𝑑2𝑢

𝑑𝑥2 as 𝑢∗ 

piecewise linear. Thus, 

‖𝑒‖𝐸
2 ≤ ℎ2 ∫ (

𝑑2𝑢

𝑑𝑥2
)

2

𝑑𝑥
1

0

= ℎ2 ∫ 𝑓2𝑑𝑥
1

0

 

as −𝑢𝑥𝑥 = 𝑓 and finally ‖𝑒‖𝐸
2 = ‖𝑢 − �̃�‖𝐸 ≤ ℎ‖𝑓‖. ∎ 

As result, we have linear convergence in ‖. ‖𝐸 and quadratic convergence in 

‖. ‖(𝐿2(0,1) norm) [7]. 

Theorem 7. [14] Let 𝑢 be true solution and �̃� be Galerkin approximation in 

𝑉ℎ , then 

‖𝑢 − �̃�‖𝐸 ≤ ℎ2‖𝑓‖ 

Proof. Let 𝜔 solve the dual problem 

{−
𝑑2𝜔

𝑑𝑥2
= 𝑢 − �̃�    𝑜𝑛 (0,1)

𝜔(0) = 𝜔(1) = 0.

                                        (10) 

Then by (10),  

‖𝑢 − �̃�‖2 = (𝑢 − �̃�, 𝑢 − �̃�) = (𝑢 − �̃�, −
𝑑2𝜔

𝑑𝑥2
). 

Integrate by parts, 
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∫ (𝑢 − �̃�)(−
𝑑2𝜔

𝑑𝑥2
)𝑑𝑥

1

0

= [𝑢 − �̃� (−
𝑑𝜔

𝑑𝑥
)]0

1 + ∫
𝑑

𝑑𝑥
(𝑢 − �̃�)

𝑑

𝑑𝑥
(𝜔)𝑑𝑥

1

0

 

As (𝑢 − �̃�)(𝑥) = 0 at 𝑥 = 0,  

(𝑢 − �̃�)(−
𝑑2𝜔

𝑑𝑥2
) = 𝑎(𝑢 − �̃�, 𝑁). 

Hence,  

‖𝑢 − �̃�‖2 = 𝑎(𝑢 − �̃�, 𝜔). 

Introduce 𝜔∗ ∈ 𝑉ℎ defined to the piecewise linear interpolant of 𝜔 at 

𝑥0, 𝑥1, … , 𝑥𝑘+1. Recall 𝑎(𝑢 − �̃�, 𝜑𝑘) for any 𝜑𝑘 ∈ 𝑉𝑘 = 𝑉ℎ where �̃� is Galerkin 

approximation to 𝑢 (see Best approximation proof). In particular,  

𝑎(𝑢 − �̃�, 𝜔∗) = 0. 

with (10) this implies 

‖𝑢 − �̃�‖2 = 𝑎(𝑢 − �̃�, 𝜔 − 𝜔∗) = ∫
𝑑

𝑑𝑥
(𝑢 − �̃�)

𝑑

𝑑𝑥
(𝜔 − 𝜔∗)𝑑𝑥

1

0

. 

Apply, Cauchy-Schwarz inequality,  

‖𝑢 − �̃�‖2 ≤ 𝑎(𝑢 − �̃�, 𝜔 − 𝜔∗) = ∫
𝑑

𝑑𝑥
(𝑢 − �̃�)

𝑑

𝑑𝑥
(𝜔 − 𝜔∗)𝑑𝑥

1

0

.

= ‖𝑢 − �̃�‖2. ‖𝜔 − 𝜔∗‖2

          (11) 

Now, 

‖𝜔 − 𝜔∗‖2 ≤ ‖
𝑑2𝜔

𝑑𝑥2
‖ ≤ ℎ‖𝑢 − �̃�‖  𝑎𝑠  

𝑑2𝜔

𝑑𝑥2
= 𝑢 − �̃�,                  (12) 

and hence, ‖𝑢 − �̃�‖ ≤ ‖𝑢 − �̃�‖𝐸    by  Poincare inequality  as 𝑢 − �̃� ∈
𝐻0

1(0,1). Also, we have ‖𝑢 − �̃�‖ ≤ ℎ‖𝑓‖ by previous theorem. Putting all together 

form (12), we get 

‖𝜔 − 𝜔∗‖2 ≤ ℎ‖𝑢 − �̃�‖ ≤ ℎ. ℎ‖𝑓‖. 

By the equation of (11), we get 

‖𝑢 − �̃�‖2 ≤ ‖𝑢 − �̃�‖𝐸 . ‖𝜔 − 𝜔∗‖2 

Thus, 

‖𝑢 − �̃�‖𝐸 ≤ ℎ2‖𝑓‖ 

∎ 

Problem 

Consider the Boundary Value Problem (BVP): 

−(𝑝(𝑥)�́�(𝑥))́ + 𝑟(𝑥)𝑢(𝑥) = 𝑓(𝑥),                           (13) 



148  Ali Allahem   

on [𝑎, 𝑏] with boundary conditions 

−𝑝(𝑎)�́�(𝑎) + 𝛼𝑢(𝑎) = 𝐴, 𝑝(𝑏)�́�(𝑏) + 𝛽𝑢(𝑏) = 𝐵, 

for 𝛼, 𝛽 ≥ 0 and 𝐴, 𝐵 ∈ ℝ. Assume that 

𝑝 ∈ 𝐶1(0,1),   𝑟 ∈ 𝐶(0,1)  𝑎𝑛𝑑  𝑓 ∈ 𝐿2(0,1), 

for some 𝑐0 > 0 

𝑝(𝑥) ≥ 𝑐0,   𝑟(𝑥) ≥ 0, ∀𝑥 ∈ [0,1]. 

To show that the weak formulation of the BVP, let 𝑉 = 𝐻1(0,1). Also, 𝑢 ∈ 𝑉 

such that 𝑎(𝑢, 𝜙) = 𝑙(𝜙) for all test function 𝜙 ∈ 𝑉, where 

𝑎(𝑢, 𝜙) = ∫ [−(𝑝(𝑥)�́�(𝑥))́�́�(𝑥) + 𝑟(𝑥)𝑢(𝑥)�́�(𝑥)]𝑑𝑥 + 𝛼𝑢(𝑎)𝜙(𝑎)
𝑏

𝑎

+ 𝛽𝑢(𝑏)𝜙(𝑏), 

and  

𝑙(𝑣) = ∫ 𝑓(𝑥)𝜙(𝑥)𝑑𝑥 + 𝐴𝜙(𝑎) + 𝐵𝜙(𝑏),
𝑏

𝑎

 

Multiply by a test function 𝜙 ∈ 𝑉 and integrate by parts: 

∫ 𝜙(𝑥)[−(𝑝(𝑥)�́�(𝑥))́ + 𝑟(𝑥)𝑢(𝑥)]𝑑𝑥 = ∫ 𝑓(𝑥)𝜙(𝑥)𝑑𝑥
𝑏

𝑎

,
𝑏

𝑎

 

[−(𝑝(𝑥)�́�(𝑥))𝜙(𝑥)]𝑎
𝑏

+ ∫ [𝑝(𝑥)�́�(𝑥)�́�(𝑥) + 𝑟(𝑥)𝑢(𝑥)𝜙(𝑥)]𝑑𝑥 = ∫ 𝑓(𝑥)𝜙(𝑥)𝑑𝑥
𝑏

𝑎

,
𝑏

𝑎

 

Apply the boundary conditions to simplify the first term: 

[−(𝑝(𝑥)�́�(𝑥))𝜙(𝑥)]𝑎
𝑏 = 𝑝(𝑎)�́�(𝑎)𝜙(𝑎) − 𝑝(𝑏)�́�(𝑏)𝜙(𝑏)

= 𝛼𝑢(𝑎)𝜙(𝑎) − 𝐴𝜙(𝑎) − 𝛽𝑢(𝑏) − 𝐵𝜙(𝑏) + 𝛽𝑢(𝑏)𝜙(𝑏)
 

We conclude that the weak form is as follows: find 𝑢 ∈ 𝑉 such that 

𝑎(𝑢, 𝜙) = 𝑙(𝜙) for all 𝜙 ∈ 𝑉. 

Finite element approximation of the BVP based on piecewise elements on the 

subdivision 𝑎 < 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 = 𝑏. We may assume that the elements are 

uniform with spacing ℎ. The method gives rise to a set of 𝑛 + 1 equations in 𝑛 + 1 

unknowns. To formulate a finite element approximation on the subdivision 𝑎 <
𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 = 𝑏, we introduce the basis functions 𝑁0(𝑥), 𝑁1(𝑥), … , 𝑁𝑛(𝑥), 

which are the piecewise linear functions on the subdivision with 𝑁𝑗(𝑥𝑘) for all 𝑘 ≠ 𝑗 

and 𝑁𝑗(𝑥𝑗) = 1. Let 𝑉 = 𝑠𝑝𝑎𝑛{𝑁𝑗(𝑥): 𝑗 = {0, … , 𝑛}. The FEM method is to find 

𝑢𝑛 ∈ 𝑉𝑛 . such that 

𝑎(𝑢𝑛, 𝜙) = 𝑙(𝜙), 
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for all 𝜙 ∈ 𝑉ℎ. Write 𝑢𝑛(𝑥) = 𝛼0𝑁0(𝑥) + 𝛼1 𝑁1(𝑥) + ⋯ + 𝛼𝑛 𝑁𝑛(𝑥), for 

coefficient 𝛼0, 𝛼1, … , 𝛼𝑛 to be determined. We find the linear system satisfied by 𝛼𝑗: 

Substitute 𝜙(𝑥) = 𝑁𝑗(𝑥), then 

𝑎(𝑢𝑛, 𝑁𝑛) = ∑𝛼𝑗  𝑎(𝑁𝑗 , 𝑁𝑘)

𝑛

𝑗=1

= 𝑙(𝑓, 𝑁𝑘). 

Let 𝑎𝑗𝑘 = 𝑎(𝑁𝑗 , 𝑁𝑘) and 𝑏𝑘 = 𝑙(𝑓, 𝑁𝑘), then we solve 

𝐴 [

𝛼0

𝛼1

⋮
𝛼𝑛

] = [

𝛽0

𝛽1

⋮
𝛽𝑛

], 

where 𝐴 is (𝑛 + 1) × (𝑛 + 1) matrix with entries 𝑎𝑖𝑗 . Moreover, the linear 

system has a unique solution, we show the matrix 𝐴 is positive definite. To see that 

assume 

𝜶𝑻𝑨𝜶 = 𝑢𝑛 𝑨 𝑢𝑛 = 𝑎(𝑢𝑛 , 𝑢𝑛),    𝜶 = (𝛼0, 𝛼1, … , 𝛼𝑛) 

We show 𝑎(𝑢𝑛, 𝑢𝑛)1/2defines a norm on 𝑉ℎ. The key is that for 𝑢 non-zero 

𝑎(𝑢, 𝑢) = ∫ 𝑝(𝑥)�́�(𝑥)2 + 𝑟(𝑥)𝑢(𝑥)2𝑑𝑥 + 𝛼𝑢(𝑎)2 + 𝛽𝑢(𝑏)2 > 0
1

0

 

as 𝛼, 𝛽 ≥ 0 and 𝑝(𝑥) ≥ 𝑐0 ≥ 0 and 𝑟(𝑥) ≥ 0. Hence, we have the condition 

that 𝑎(𝑢𝑛, 𝑢𝑛) > 0 when 𝑢𝑛 is non-trivial. Then if 𝜶 ≠ 𝟎, 𝜶𝑻𝑨𝜶 > 𝟎 and the 

matrix 𝐴 is positive definite and hence non-singular. Consequently, the Galerkin 

system has a unique solution. Furthermore, The matrix is symmetric as 𝑎(𝑢, 𝑣) =
𝑎(𝑣, 𝑢) and tridiagonal because the support of 𝑁𝑖(𝑥) is [𝑥𝑖−1, 𝑥𝑖+1] ∩ [𝑎, 𝑏]. Hence, 

the product 𝑁𝑖(𝑥)𝑁𝑗(𝑥)is zero if |𝑖 − 𝑗| > 1. 

If we consider the Boundary Value Problem (13) on [0,1] with boundary 

conditions 

𝑢(0) = 𝑢(1) = 0 

for 𝛼, 𝛽 ≥ 0 and 𝐴, 𝐵 ∈ ℝ. Assume that 

𝑝 ∈ 𝐶1(0,1),   𝑟 ∈ 𝐶(0,1)  𝑎𝑛𝑑  𝑓 ∈ 𝐿2(0,1), 

and for some 𝑐0 > 0 

𝑝(𝑥) ≥ 𝑐0,   𝑟(𝑥) ≥ 0, ∀𝑥 ∈ [0,1] 

Given that 𝑢ℎ denotes the piecewise linear finite element approximation to 𝑢 

on uniform elements of width ℎ, it is easy to show that 

‖𝑢 − 𝑢ℎ‖𝐻0
1(0,1) ≤ 𝐶1ℎ‖𝑢′′‖, 

with 𝐶1
2 = 1

𝑐0
[‖𝑝‖∞ + ℎ2‖𝑟‖∞]. The best approximation property asserts that 
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𝑎(𝑢 − 𝑢ℎ, 𝑢 − 𝑢ℎ) ≤ 𝑎(𝑢 − 𝜙, 𝑢 − 𝜙), 

for any 𝜙 ∈ 𝑉ℎ. This is a generalisation of the property derived in class for 

the diffusion problem. Let 𝑣ℎ denote the piecewise linear interpolant to 𝑢 at grid 

points 𝑥𝑗 . With 𝑒 = 𝑢 − 𝑣ℎ, we have 

‖𝑒′‖ ≤ ℎ‖𝑒𝑥𝑥‖,        ‖𝑒‖ ≤ ℎ2‖𝑒𝑥𝑥‖. 

We use ‖𝑢‖∞ to denote 𝑠𝑢𝑝0≤𝑥≤1|𝑢(𝑥)|. Hence, 

𝑎(𝑒, 𝑒) = ∫ 𝑝(𝑥)�́�(𝑥)2 + 𝑟(𝑥)𝑢(𝑥)2𝑑𝑥,
1

0

≤ ‖𝑝‖∞‖𝑒′‖2 + ℎ2‖𝑟‖∞‖𝑒‖2,

≤ ‖𝑝‖∞ℎ2‖𝑒′′‖2 + ℎ4‖𝑟‖∞‖𝑒′′‖2,

= ℎ2[‖𝑝‖∞ + ℎ2‖𝑟‖∞]‖𝑒′′‖2.

 

Now, 𝑒′′ = 𝑢′′ as 𝑒 = 𝑢 − 𝑢ℎ and 𝑢ℎ is piecewise linear. Thus  

𝑎(𝑒, 𝑒) = ℎ2[‖𝑝‖∞ + ℎ2‖𝑟‖∞]‖𝑢′′‖2 

Also, note 

𝑎(𝑢 − 𝑢ℎ, 𝑢 − 𝑢ℎ) = ∫ 𝑝(𝑥)(𝑢′(𝑥) − 𝑢ℎ′
(𝑥))2 + 𝑟(𝑥)(𝑢(𝑥)𝑢ℎ(𝑥))2𝑑𝑥

1

0

≥ 𝑐0‖𝑢 − 𝑢ℎ‖2
𝐻0

1(0,1)
 

Hence,  

‖𝑢 − 𝑢ℎ‖2
𝐻0

1(0,1) ≤
1

𝑐0

[‖𝑝‖∞ + ℎ2‖𝑟‖∞]ℎ2‖𝑢′′‖2 

Thus, we have proved the result with 𝐶1
2 = 1

𝑐0
[‖𝑝‖∞ + ℎ2‖𝑟‖∞] (assuming 

ℎ ≥ 1). Consequently, the following inequality  

𝑐0‖𝑢′‖2 ≤ ‖𝑓‖‖𝑢‖ 

and  

‖𝑢′′‖ ≤ ‖
𝑝′

𝑝
‖

∞

‖𝑓‖ + ‖
𝑟

𝑝
‖

∞

‖𝑓‖ + ‖
1

𝑝
‖ ‖𝑓‖ 

hold. To see that, from −(𝑝𝑢′)′ + 𝑟𝑢 = 𝑓, we get −𝑝𝑢′′ − 𝑝′𝑢′ + 𝑟𝑢 = 𝑓 

and 

‖𝑢′′‖ = ‖
𝑝′

𝑝
𝑢′ −

𝑟

𝑝
𝑢 +

1

𝑝
𝑓‖ ,

≤ ‖
𝑝′

𝑝
𝑢′‖ − ‖

𝑟

𝑝
𝑢‖ + ‖

1

𝑝
𝑓‖ ,

≤ ‖
𝑝′

𝑝
‖

∞

‖𝑢′‖ − ‖
𝑟

𝑝
‖

∞

‖𝑢‖ + ‖
1

𝑝
‖

∞

‖𝑓‖.
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From the weak form, 

∫ 𝑝(𝑥)�́�(𝑥)2 + 𝑟(𝑥)𝑢(𝑥)2𝑑𝑥 = ∫ 𝑓(𝑥)𝑢(𝑥)𝑑𝑥
1

0

1

0

 

Using Poincare's inequality (as 𝑢 ∈ 𝐻0
1(0,1)) and Cauchy-Schwarz and 

𝑝(𝑥) ≥ 𝑐0, we get 𝑐0‖𝑢′‖2 ≤ ‖𝑓‖‖𝑢‖ ≤ ‖𝑓‖‖𝑢′‖ and hence 

‖𝑢‖ ≤ ‖𝑢′‖ ≤
1

𝑐0
‖𝑓‖ 

Further, we can show that 

‖𝑢 − 𝑢ℎ‖𝐻0
1(0,1) ≤ 𝐶2ℎ‖𝑓‖, 

where 𝐶2 should be specified. Now,  

‖𝑢′′‖ ≤ ‖
𝑝′

𝑝
‖

∞

1

𝑐0
‖𝑓‖ − ‖

𝑟

𝑝
‖

∞

‖𝑓‖ + ‖
1

𝑝
‖

∞

‖𝑓‖ 

Hence, 

𝐶2 = 𝐶1(
1

𝑐0
‖
𝑝′

𝑝
‖

∞

+
1

𝑐0
‖
𝑟

𝑝
‖

∞

+ ‖
1

𝑝
‖

∞

) 

Now, we provide an example to calculate the right hand side in these 

inequality such that (𝑥) = 1, 𝑟(𝑥) = 0, 𝑓(𝑥) = 1 and ℎ = 10−3. So, we get 𝑐0 =
1, ‖𝑟‖∞ = 0 and ‖𝑝‖∞ = 0. Hence, 𝐶1 = 1 and 𝐶1 = 𝐶2 = 1. Hence 

‖𝑢‖𝐻0
1(0,1) ≤ ℎ = 10−3. 

 

Conclusion 

We have seen that Galerkin method plays an important role on integrals of 

functions that can easy be evaluated on the domain. We showed that Galerkin 

method provides high-order approximation. Tricky problem presented with proof of 

some smarted inequalities for clarification and signification on it properties.  
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