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Introduction 

In this paper, we consider the multiplicity results of nontrivial nonnegative 

solutions of the following problem (1.1) 

{
−∆𝑢 − 𝜇

𝑢

|𝑦|2
= |𝑢|2∗−2𝑢 + 𝜆𝑔(𝑦)|𝑢|𝑞−2𝑢 𝑖𝑛 Ω, 𝑦 ≠ 0

𝑢 = 0,                                                           𝑜𝑛 𝜕Ω
 

 

With Ω ⊂ ℝ𝑘
ℝ𝑁−𝑘 where each point x in ℝ𝑁  is written as a pair (y,z)∈

ℝ𝑘
ℝ𝑁−𝑘    where k and N are integers such that N≥3 and k belongs to 

{2, … , 𝑁}, 2∗ = 2𝑁/(𝑁 − 2)  is the Sobolev critical exponent, 1<q<2, -∞< 𝜇 <

 𝜇𝑘̅̅ ̅̅ =
(𝑘−2)2

4
, 𝜆 is a real parameter and g is continuous function in Ω̅. In recent years, 

many auteurs have paid much attention to the following singular elliptic problem, 

i.e., the case k=N,g≡1 in (1.1),  (1.2): 

 

{
−∆𝑢 − 𝜇

𝑢

|𝑥|2
= |𝑢|𝑝−2𝑢 + 𝜆𝑢 𝑖𝑛 Ω, 𝑥 ≠ 0

𝑢 = 0,                                                           𝑜𝑛 𝜕Ω
 

 

Where Ω  is a smooth bounded domain in 

 

ℝ𝑁 (N>2), 0∈ Ω, 𝜆 > 0, 0 ≤ 𝜇 <  𝜇𝑁̅̅ ̅̅ =
(𝑁−2)2

4
 

 

And 2∗ = 2𝑁/(𝑁 − 2) is the critical Sobolev exponent, see [5,6,8] and 

references therein. The quasilinear form of (1.2) is discussed in [11].Some results 

are already available for (1.1). Wang and Zhou [17] proved that there exist at least 

two solutions for (1.1) with 0 ≤ 𝜇 <  𝜇𝑁̅̅ ̅̅ =
(𝑁−2)2

4
. Bouchekif and Matallah [2] 

showed the existence of two solutions of (1.1) under certain conditions on a 

weighted function h, when 0 ≤ 𝜇 <  𝜇𝑁 ,̅̅ ̅̅ ̅  0 < 𝜆 <⊼  with ⊼  a positive constant.  

Concerning existence results in the case k<N, we cite [9,10,14] and the 

references therein. Musina [14] considered (1.1) with 𝜆 = 0, also (1.1). She 

established the existence of a ground state solution when 2<k≤N and 0< 𝜇 <  𝜇𝑘̅̅ ̅̅   for 

(1.1) with  𝜆 = 0 . She also showed that (1.1) with 𝜆 = 0   does not admit ground 

state solutions. Badiale et al. [1] studied (1.1) with 𝜆 = 0. They proved the existence 

of at least a nonzero nonnegative weak solution u, satisfying u(y,z)=u(|y|,z) when 

2≤k<N and 𝜇 < 0 . Bouchekif and El Mokhtar [3] proved that (1.1) admits two 

distinct solutions when 2<k≤N, b=N-p(N-2)/2 with 2<p≤ 2∗, <  𝜇 <  𝜇𝑘̅̅ ̅̅   and  0 <
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𝜆 <⊼  with ⊼  a positive constant. Terracini [16] proved that there is no positive 

solutions of (1.1) with  

𝜆 = 0 when  𝜇 < 0. The regular problem corresponding to has been 

considered on a regular bounded domain Ω by Tarantello [15]. She proved that, with 

a nonhomogeneous term g∈ 𝐻−1(Ω), the dual of 𝐻0
1(Ω), not identically zero and 

satisfying a suitable condition, the problem considered admits two distinct solutions. 

 Before formulating our results, we give some definitions and notations. 

We denote by 𝐷0
1,2 = 𝐷0

1,2(ℝ𝑘\ {0}ℝ𝑁−𝑘)  and 𝐻𝜇   = 𝐻𝜇    (ℝ𝑘\ {0}ℝ𝑁−𝑘) , the 

closure of 𝐶0
∞(ℝ𝑘\ {0}ℝ𝑁−𝑘)  with respect to the norms 

 

‖𝑢‖𝜇   = (∫ (
Ω

|∇𝑢|2 − 𝜇|y|−2|𝑢|2)𝑑𝑥)1/2 𝑎𝑛𝑑 ‖𝑢‖ = (∫ |∇𝑢|2

Ω

𝑑𝑥)1/2 

 

respectively, with 𝜇 <  𝜇𝑘̅̅ ̅̅  𝑓𝑜𝑟 𝑘 ≠ 2. 

From the Hardy-Sobolev-Maz'ya inequality, it is easy to see that the 

norm‖𝑢‖𝜇   is equivalent to  ‖𝑢‖. More explicitly, we have 

 

(1 − (√ 𝜇𝑘̅̅ ̅̅ )−2 𝜇+)1/2‖𝑢‖ ≤ ‖𝑢‖𝜇   ≤ (1 − (√ 𝜇𝑘̅̅ ̅̅ )−2 𝜇−)
1
2‖𝑢‖, 

 

With  𝜇+ = max(𝜇, 0) 𝑎𝑛𝑑  𝜇− = 𝑚𝑖𝑛(𝜇, 0) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 ∈ 𝐻𝜇   . 

We list here a few integral inequalities. 

The starting point for studying (1.1), is the Hardy inequality with cylindrical 

weights [14]. It states that 

 

 𝜇𝑘̅̅ ̅̅ ∫ |y|−2

Ω

𝑣2𝑑𝑥 ≤ ∫ |∇𝑣|2

Ω

𝑑𝑥, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝐻𝜇   , 

 

Since our approach is variational, we define the functional I on 𝐻𝜇   by 

I(u):=(1/2) ‖𝑢‖𝜇
2

− (
1

2∗) ∫ |𝑢|2∗

Ω
𝑑𝑥 − (

𝜆

𝑞
) ∫ 𝑔|𝑢|𝑞𝑑𝑥,

Ω
 

A point u∈ 𝐻𝜇    is a weak solution of the equation (1.1) if it satisfies 

〈𝐼′(𝑢), 𝜑〉 ≔ ∫ ((∇𝑢∇𝜑) − 𝜇|𝑦|−2(𝑢𝜑))𝑑𝑥 −
Ω

∫ |𝑢|2∗−2(𝑢𝜑)
Ω

𝑑𝑥 
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-𝜆 ∫ 𝑔|𝑢|𝑞−2(𝑢𝜑)𝑑𝑥, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜑 ∈ 𝐻𝜇   .Ω
 

〈. , . 〉 here denotes the product in the duality 〈𝐻′𝜇   , 𝐻𝜇   〉 (𝐻′
𝜇   𝑑𝑢𝑎𝑙 𝑜𝑓 𝐻𝜇   ) 

Let 

𝑆𝜇  ≔ inf
𝑢∈𝐻𝜇   \ {0}

 ‖𝑢‖𝜇
2

(∫ |𝑢|𝑝
Ω

𝑑𝑥)2/𝑝
 

 

From [12], 𝑆𝜇    is achieved. Now we consider the following assumption: 

(G) g is a continuous function defined in Ω̅  and there exist g₀ and 𝜌0   positive 

such that g(x)≥g₀ for all x∈ 𝐵(0, 𝜌0  )...) 

 In our work, we research the critical points as the minimizers of the energy 

functional associated to the problem (1.1) on the constraint defined by the Nehari 

manifold, which are solutions of our system. 

Let 𝜌0  be positive number such that 

 

𝜆0  ≔ (𝑆𝜇  )
2(2−𝑞)/2∗(2∗−2)  (2∗−2)

(2∗−𝑞)
((

 (2∗−2)

(2∗−𝑞)
)

(
2−𝑞

2∗−2
) 1

‖𝑔‖
𝐻𝜇   

−1
. 

 

Now we can state our main results. 

Theorem1: Assume that, -∞< 𝜇 <  𝜇𝑘̅̅ ̅̅   and 𝜆 verifying 0< 𝜆 < 𝜆0  , then the system 

(1.1) has at least one positive solution. 

Therem2: In addition to the assumptions of the Theorem1, there exists 𝜆1  =
q

2
𝜆0   

such that if  𝜆 

Satisfying 0< 𝜆 < 𝜆1  , then (1.1) has at least two positive solutions.     

Theorem3: In addition to the assumptions of the Theorem2, assuming N≥6, there 

exists a positive real 𝜆2   such that, if 𝜆 satisfy 0< 𝜆 < min (𝜆1  , 𝜆2  ) , then (1.1) has 

at least two positive solutions and at least one pair of sign-changing solutions.  

This paper is organized as follows. In Section 2, we give some preliminaries. 

Section 3 and 4 are devoted to the proofs of Theorems 1 and 2. In the last Section, 

we prove the Theorem3.  

 

2. Preliminaries 

Definition1: Let c∈ℝ, E a Banach space and I∈C¹(E,ℝ) 

i) (𝑢𝑛  )𝑛   is a Palais-Smale sequence at level c (in short  (𝑃𝑆)𝑐  ) in E for I if 
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I(𝑢𝑛  ) = 𝑐 +  𝑜𝑛   (1)𝑎𝑛𝑑 𝐼′( 𝑢𝑛  ) =  𝑜𝑛   (1) 

Where 𝑜𝑛   (1)  tends to 0 as n goes at infinity. 

ii) We say that I satisfies the (𝑃𝑆)𝑐   condition if any (𝑃𝑆)𝑐  sequence in E for 

I has a convergent subsequence. 

Lemma1: Let X Banach space, and J∈C¹(X,R) verifying the Palais -Smale 

condition. Suppose that J(0)=0 and that: 

i) there exist R>0, r>0 such that if ‖u‖=R, then J(u)≥r 

ii) there exist (u₀)∈X such that ‖u₀‖>R and J(u₀)≤0. 

Let 

c:= inf
ᵧ∈𝛤

 max
𝑡∈[0,1]

(𝐽 (ᵧ(𝑡)))  

where  

𝛤 = {ᵧ ∈ 𝐶([0,1], 𝑋)𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ᵧ(0) = 0 𝑎𝑛𝑑 ᵧ(1) = u0}  

then c is critical value of J such that c≥r. 

 

Nehari manifold 

It is well known that I is of class C¹ in 𝐻𝜇    and the solutions of (1.1) are the 

critical points of I which is not bounded below on 𝐻𝜇    . Consider the following 

Nehari manifold  

N={u∈ 𝐻𝜇   \ {0}:  〈𝐼′(𝑢), 𝑢〉 = 0}  

Thus, u∈N if and only if 

 

‖𝑢‖𝜇
2

− ∫ |𝑢|2∗

Ω

𝑑𝑥 − 𝜆 ∫ 𝑔|𝑢|𝑞𝑑𝑥 = 0. (1)
Ω

 

 

Note that N contains every nontrivial solution of the problem (1.1). 

Moreover, we have the following results. 

 

Lemma2: I is coercive and bounded from below on N. 

Proof: If u∈N, then by (1) and the Hölder inequality, we deduce that 

I(u):=(( 2∗ − 2)/ 2∗ 2) ‖𝑢‖𝜇
2

− 𝜆(( 2∗ − 𝑞)/ 2∗ 𝑞) ∫ 𝑔|𝑢|𝑞𝑑𝑥,
Ω

 

≥(( 2∗ − 2)/ 2∗ 2) ‖𝑢‖𝜇
2

− 𝜆(( 2∗ − 𝑞)/ 2∗ 𝑞)) ‖𝑢‖𝜇
𝑞
 ‖𝑔‖𝐻𝜇   

−1 . (2) 
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Thus, I is coercive and bounded from below on N. 

Define 

𝜑(𝑢) = 〈𝐼′(𝑢), 𝑢〉 

 

Then, for u∈N 

〈𝜑′(𝑢), 𝑢〉 =2 ‖𝑢‖𝜇
2

− 2∗ ∫ |𝑢|2∗
𝑑𝑥 −

Ω
𝜆 ∫ 𝑔|𝑢|𝑞𝑑𝑥,

Ω
 

= (2-q) ‖𝑢‖𝜇
2

− (2∗ − 1) ∫ |𝑢|2∗
𝑑𝑥

Ω
 

𝜆(2∗ − 𝑞) ∫ 𝑔|𝑢|𝑞𝑑𝑥 − (2∗ − 2) ‖𝑢‖𝜇
2

. (3)
Ω

 

Now, we split N in three parts: 

𝑁+={u∈ 𝑁:  〈𝜑′(𝑢), 𝑢〉 > 0} 

𝑁0={u∈ 𝑁:  〈𝜑′(𝑢), 𝑢〉 = 0} 

𝑁−={u∈ 𝑁:  〈𝜑′(𝑢), 𝑢〉 < 0} 

We have the following results. 

 

Lemma3: Suppose that u₀ is a local minimizer for I on N. Then, if u₀∉N⁰, u₀ is a 

critical point of I. 

Proof: If u₀ is a local minimizer for I on N, then u₀ is a solution of the optimization 

problem 

 min I(u)
{𝑢/𝜑(𝑢)=0}

 

Hence, there exists a Lagrange multipliers θ∈ℝ  such that 

𝐼′( 𝑢₀) = θ𝜑′( 𝑢₀) 𝑖𝑛 𝐻′ . 

Thus, 

  〈𝐼′( 𝑢₀), 𝑢₀〉 = 𝜃〈𝜑′( 𝑢₀), 𝑢₀〉 

 

But 〈𝜑′( 𝑢₀), 𝑢₀〉 ≠ 0, since u₀∉N⁰. Hence θ=0. This completes the proof. 

Lemma4: There exists a positive number 𝜆0   such that for all  𝜆, verifying 

0< 𝜆 < 𝜆0   

we have N⁰≠∅. 

Proof: Let us reason by contradiction. 
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Suppose N⁰≠∅ such that 0< 𝜆 < 𝜆0  . Then, by (3) and for u∈N⁰, we have 

(2-q) ‖𝑢‖𝜇
2

− (2∗ − 1) ∫ |𝑢|2∗
𝑑𝑥

Ω
= 0 

𝜆(2∗ − 𝑞) ∫ 𝑔|𝑢|𝑞𝑑𝑥 − (2∗ − 2) ‖𝑢‖𝜇
2

.
Ω

 

Moreover, by the Hölder inequality and the Sobolev embedding theorem, we obtain 

‖𝑢‖𝜇   ≥ (𝑆𝜇  )
2

2∗(2∗−2) [
2 − 𝑞

2∗ − 1
]

1
(2∗−2)

  (4) 

And 

‖𝑢‖𝜇   ≤ [
2∗−𝑞

2∗−2
]

1
(2−𝑞)

[𝜆]
1

(2−𝑞) (5). 

From (4) and (5), we obtain 𝜆 ≥ 𝜆0   , which contradicts an hypothesis. 

Thus N=N⁺∪N⁻. Define 

c:= inf
𝑢∈𝑁

I(u), 𝑐+:= inf
𝑢∈𝑁+

I(u), 𝑐−:= inf
𝑢∈𝑁−

I(u), 

For the sequel, we need the following Lemma. 

Lemma5: 

i) For all  such that 0< 𝜆 < 𝜆0  , one has c≤c⁺<0 

ii) For all  such that 0< 𝜆 <
𝑞

2
𝜆0  , one has 

𝑐− > 𝐶0  = 𝐶0  (𝜆, 𝑆𝜇  , ‖ℎ+‖∞   , 𝑞). 

Proof: (i) Let u∈N⁺. By (3), we have 

[
2 − 𝑞

2∗ − 1
] ‖𝑢‖𝜇

2
> ∫ |𝑢|2∗

𝑑𝑥
Ω

 

And so 

I(u) = [(q-2)/2𝑞] ‖𝑢‖𝜇
2

+ [(2∗ − 𝑞)/2∗𝑞] ∫ |𝑢|2∗
𝑑𝑥

Ω
 

< - ( 2 − 𝑞)[
2∗(2∗−1)−2(2∗−𝑞)

2𝑞2∗(2∗−1)
]‖𝑢‖𝜇

2
< 0. 

We conclude that c≤c⁺<0. 

ii) Let u∈N⁻. By (3), we get 

[
2 − 𝑞

2∗ − 1
] ‖𝑢‖𝜇

2
< ∫ |𝑢|2∗

𝑑𝑥
Ω

. 

Moreover, by Sobolev embedding theorem, we have 
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∫ |𝑢|2∗
𝑑𝑥

Ω
≤(𝑆𝜇  )

−2∗

2  ‖𝑢‖𝜇
2∗

. 

This implies 

‖𝑢‖𝜇   > (𝑆𝜇  )
2∗

2(2∗−2) [
2−𝑞

2∗−1
]

1
(2∗−2)

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢∈N⁻. (6) 

 

By (2), we get 

𝐼(𝑢) ≥ ‖𝑢‖𝜇
𝑞

[
2∗ − 2

2∗2
] [

2 − 𝑞

2∗ − 1
]

(2−𝑞)
(2∗−2)

(𝑆𝜇  )
2∗(2−𝑞)
2(2∗−2) + 

−𝜆‖𝑢‖𝜇
𝑞
 [(

2∗−𝑞

2∗2
) ‖𝑔‖𝐻𝜇   

−1  ]. 

Thus, for all 𝜆 such that 

0< 𝜆 < 𝜆1  = [
2∗−2

2∗2
] [

2−𝑞

2∗−1
]

(2−𝑞)

(2∗−2)
(𝑆𝜇  )

2∗(2−𝑞)

2(2∗−2) (
2∗𝑞

2∗−𝑞
) (1/‖𝑔‖𝐻𝜇   

−1) =
𝑞

2
𝜆0   

we have I(u)≥C₀. 

 

Proposition1: (see [4]) 

i) For all 𝜆 such that 0< 𝜆 < 𝜆0  , there exists a (𝑃𝑆)𝑐⁺   sequence in N⁺  

ii) For all  such that 0< 𝜆 <
𝑞

2
𝜆0  , there exists a (𝑃𝑆)𝑐−   sequence in N⁻ . 

    We write 

𝑡𝑀  ≔ 𝑡𝑚𝑎𝑥  = [
(2 − 𝑞) ‖𝑢‖𝜇

2

(2∗ − 𝑞) ∫ |𝑢|2∗
𝑑𝑥

Ω

]

1
(2∗−2)

> 0. 

 

Lemma6: Let  real parameters such that  0< 𝜆 < 𝜆0  . For each ∈ 𝐻𝜇    , there exist 

unique 

𝑡+ and 𝑡− 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 0 < 𝑡+ <  𝑡𝑚  <  𝑡−, (𝑡+𝑢) ∈ 𝑁+, (𝑡−𝑢) ∈ 𝑁− 

I(𝑡+𝑢) = inf
0<𝑡< 𝑡𝑚  

I(tu) and  I(𝑡−𝑢) =inf
𝑡≥0

I(tu). 

Proof: With minor modifications, we refer to [4]. 
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3. Proofs 

Proof of Theorem1 

Now, taking as a starting point the work of Tarantello [13], we establish the 

existence of a local minimum for I on 𝑁+ . 

Proposition2: For all  such that 0< 𝜆 < 𝜆0  , the functional I has a minimizer u₀⁺∈N⁺ 

and it satisfies 

i) I (u₀⁺) =c= 𝑐⁺ 

ii) (u₀⁺) is a nontrivial solution of (1.1). 

Prof: If 0< 𝜆 < 𝜆0  , then by Proposition1 (i) there exists a (𝑢𝑛  )𝑛   -  (𝑃𝑆) 𝑐⁺     

sequence in N⁺, thus it bounded by Lemma2. Then, there exists u₀⁺∈H and we can 

extract a subsequence 

which will denoted by (𝑢𝑛  )𝑛   such that 

𝑢𝑛  → u₀⁺ weakly in H 

𝑢𝑛  → u₀⁺ weakly in 𝐿2∗
(Ω) 

𝑢𝑛  → u₀⁺ strongly in 𝐿𝑞(Ω) 

𝑢𝑛  → u₀⁺ a.e in Ω. (7) 

Thus, by (7), u₀⁺ is a weak nontrivial solution of (1.1). Now, we show that 𝑢𝑛   

converges to u₀⁺ strongly in H. Suppose otherwise. By the lower semi-continuity of 

the norm, then either 

‖𝑢₀⁺‖𝜇   < liminf
𝑛→∞

‖𝑢𝑛  ‖𝜇    

 and we obtain 

c I(u₀⁺) = [(2∗-2)/2∗2] ‖𝑢₀⁺‖𝜇
2

− 𝜆(2∗ − 𝑞)/2∗𝑞 ∫ 𝑔|𝑢₀⁺|𝑞𝑑𝑥.
Ω

 

< 𝑙𝑖𝑚𝑖𝑛𝑓𝐼(𝑢𝑛  ) = 𝑐
𝑛→∞

 

We get a contradiction. Therefore,   converge to u₀⁺ strongly in H. Moreover, we 

have u₀⁺∈N⁺. If not, then by Lemma6, there are two numbers t₀⁺ and t₀⁻, uniquely 

defined so that (t₀⁺u₀⁺)∈N⁻ and (t⁻u₀⁺)∈N⁺. In particular, we have t₀⁻ < t₀⁺=1. Since 

𝑑

𝑑𝑡
𝐼(𝑡 u₀⁺)(t= t₀⁺)=0 and 

𝑑2

𝑑𝑡2 𝐼(𝑡 u₀⁺)(t= t₀⁺)>0, 

 

there exists t₀⁻< t⁻≤ t₀⁺ such that I(t₀⁻u₀⁺)<I(t⁺u₀⁺). By Lemma6, we get 

I(t₀⁻u₀⁺)<I(𝑡− u₀⁺)< I(t⁺u₀⁺)= I(u₀⁺), 

 

un
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which contradicts the fact that I(u₀⁺)=c⁺. Since I(u₀⁺)=I(|u₀⁺|) and |u₀⁺|∈N⁺, then by 

Lemma3, we may assume that u₀⁺ is a nontrivial nonnegative solution of (1.1). By 

the Harnack inequality, we conclude that u₀⁺>0, see for example [7]. 

 

Proof of Theorem2 

Next, we establish the existence of a local minimum for I on N⁻. For this, we 

require the following Lemma. 

 

Lemma7: For all 𝜆 such that  0< 𝜆 <
𝑞

2
𝜆0  , the functional I has a minimizer u₀⁻ in 

N⁻ and it satisfies: 

i) I(u₀⁻)=c⁻>0 

ii) u₀⁻ is a nontrivial solution of (1.1) in H. 

Proof: If 0< 𝜆 <
𝑞

2
𝜆0   , then by Proposition1  (ii) there exists a (𝑢𝑛  )𝑛   -  (𝑃𝑆) 𝑐−     

sequence in N⁻, thus it bounded by Lemma2. Then, there exists u₀⁻∈H and we can 

extract a subsequence which will denoted by (𝑢𝑛  )  such that 

𝑢𝑛  → u₀⁻ weakly in H 

𝑢𝑛  → u₀⁻weakly in 𝐿2∗
(Ω) 

𝑢𝑛  → u₀⁻strongly in 𝐿𝑞(Ω) 

𝑢𝑛  → u₀⁻a.e in Ω. 

 

This implies 

∫ |𝑢𝑛  |
2∗

𝑑𝑥 → 
Ω

∫ | 𝑢₀⁻|2∗
𝑑𝑥, 𝑎𝑠 𝑛 𝑔𝑜𝑒𝑠 𝑡𝑜 

Ω
∞ 

 

Moreover, by (3) we obtain 

∫ |𝑢𝑛  |
2∗

𝑑𝑥 > 
Ω

[(2∗-q)/(2∗ − 1)] ‖𝑢‖𝜇
2

 (8). 

 

By (4) and (8) there exists a positive number 

𝐶1  ≔ [
2 − 𝑞

2∗ − 1
]

(2∗−1)
(2∗−2)

(𝑆𝜇  )
2

2∗(2∗−2) 

Such that 
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∫ |𝑢𝑛  |
2∗

𝑑𝑥 >  𝐶1  
Ω

(9). 

This implies that 

∫ |𝑢₀⁻|2∗
𝑑𝑥 >  𝐶1  

Ω

 

Now, we prove that (𝑢𝑛  )  converges to u₀⁻ strongly in H. Suppose otherwise. Then, 

either  

‖𝑢₀⁻‖𝜇   < liminf
𝑛→∞

‖𝑢𝑛  ‖𝜇    

 

By Lemma6 there is a unique t₀⁻ such that (t₀⁻u₀⁻)∈N⁻. Since 

𝑢𝑛  ∈ 𝑁⁻, I (𝑢𝑛  ) ≥ 𝐼(𝑡𝑢𝑛  ), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0, 

We have 

I(t₀⁻u₀⁻)<lim  
𝑛→∞

 I(t₀⁻𝑢𝑛  )   ≤ I(𝑢𝑛  ) = 𝑐⁻ 

and this is a contradiction. Hence,  (𝑢𝑛  )  converges to u₀⁻ strongly in H. 

Thus I(𝑢𝑛    ) 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 𝑡𝑜 𝐼(𝑢₀⁻ ) = 𝑐⁻ as n tends to +∞. 

Since I(u₀⁻)=I(|u₀⁻|) and u₀⁻∈N⁻, then by (9) and Lemma6, we may assume 

that u₀⁻ is a nontrivial nonnegative solution of (1.1). By the maximum principle, we 

conclude that u₀⁻>0. 

Now, we complete the proof of Theorem2. By Propositions2 and Lemma7, 

we obtain that (1.1) has two positive solutions u₀⁺∈N⁺ and u₀⁻∈N⁻. Since N⁺∩N⁻=∅, 

this implies that u₀⁺ and u₀⁻ are distinct. 

Proof of Theorem3 

In this section, we consider the following Nehari submanifold of N. 

𝑁𝑟  ={u∈ 𝐻𝜇   \ {0}:  〈𝐼′(𝑢), 𝑢〉 = 0 𝑎𝑛𝑑 ‖𝑢‖𝜇   ≥ 𝑟 > 0 }. 

Thus, u∈ 𝑁𝑟   if and only if 

2 ‖𝑢‖𝜇
2

− ∫ |𝑢|2∗
𝑑𝑥 −

Ω
𝜆 ∫ 𝑔|𝑢|𝑞𝑑𝑥 = 0 𝑎𝑛𝑑 ‖𝑢‖𝜇   ≥ 𝑟 > 0.

Ω
 

Firsly, we need the following Lemmas 

Lemma8: Under the hypothesis of Theorem3, there exist 𝑟0  , 𝜆2  > 0  such that 𝑁𝑟   

is nonempty for any 0< 𝜆 < 𝜆2    and 0< 𝑟 < 𝑟0   . 

Proof: Fix u₀∈H\{0} and let 

g(t)= 〈𝐼′(𝑡𝑢0  ), 𝑡𝑢0  〉 = 𝑡2 ‖𝑢0  ‖𝜇
2

− 𝑡2∗
∫ |𝑢0  |

2∗
𝑑𝑥 −

Ω
𝜆𝑡𝑞 ∫ 𝑔|𝑢0  |

𝑞𝑑𝑥.
Ω
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Clearly g(0)=0 and g(t)→-∞ as t→+∞. Moreover, we have 

g(1)=  ‖𝑢0  ‖𝜇
2

− ∫ |𝑢0  |
2∗

𝑑𝑥 −
Ω

𝜆 ∫ 𝑔|𝑢0  |
𝑞𝑑𝑥.

Ω
 

≥ [‖𝑢0  ‖𝜇
2

− (𝑆𝜇  )
−2∗

2 ‖𝑢0  ‖𝜇

2∗

] −  𝜆‖𝑢0  ‖𝜇
𝑞‖𝑔‖𝐻𝜇   

−1 

If ‖𝑢‖𝜇   ≥ 𝑟 > 0 𝑓𝑜𝑟 0 <  𝑟 < 𝑟0  =  (𝑆𝜇  )
2∗

2(  2∗−2) ,    then there exist 

𝜆2  ≔ 𝑟2−𝑞(1 − 𝑟2∗−2 (𝑆𝜇  )
−2∗

2 )(
1

‖𝑔‖
𝐻𝜇   

−1
) 

and t₀>0 such that g(t₀)=0. Thus, (𝑡0  𝑢0  ) ∈ 𝑁𝑟    and  𝑁𝑟   is nonempty for any 

0< 𝜆 < 𝜆2  . 

Lemma9: There exist ρ, 𝜆2   positive reals such that 〈𝜑′(𝑢), 𝑢〉 < −𝜌 < 0  for 

u∈ 𝑁𝑟    and any 𝜆  verifying 

0< 𝜆 < min (𝜆2  , 𝜆3  ) 

Let  u∈ 𝑁𝑟  , then by (1), (3) and the Holder inequality, allows us to write 

〈𝜑′(𝑢), 𝑢〉 = 𝜆(2∗ − 𝑞) ∫ 𝑔|𝑢|𝑞𝑑𝑥 − (2∗ − 2) ‖𝑢‖𝜇
2

Ω

 

≤ 𝜆(2∗ − 𝑞)‖𝑢‖𝜇
𝑞‖𝑔‖𝐻𝜇   

−1 − (2∗ − 2)‖𝑢‖𝜇
2
 

≤ ‖𝑢‖𝜇
𝑞

[𝜆(2∗ − 𝑞)‖𝑔‖𝐻𝜇   
−1 − (2∗ − 2)𝑟2−𝑞], 

Thus if 

0< 𝜆 < 𝜆4  = [(2∗ − 2)𝑟2−𝑞/(2∗ − 𝑞)‖𝑔‖𝐻𝜇   
−1] 

and choosing 𝜆3  ≔ min (𝜆2  , 𝜆4  )  with 𝜆2   defined in Lemma9, then we obtain 

that 

〈𝜑′(𝑢), 𝑢〉 < 0, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑢 ∈ 𝑁𝑟  . (10) 

Lemma10: Suppose N≥6. Then, there exist α and η   positive constants such that 

i) we have I(u) ≥ η>0 for ‖𝑢‖𝜇   = έ. 

ii) there exists w∈ 𝑁𝑟    when ‖𝑢‖𝜇   > έ , with ‖𝑢‖𝜇   = έ such that I(w)≤0. 

Proof: We can suppose that the minima of J are realized by u₀⁺ and u₀⁻. The 

geometric conditions of the mountain pass theorem are satisfied. Indeed, we have: 

i) By (3), (10) and the fact that  
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∫ |𝑢|2∗
𝑑𝑥 > [(2 − 𝑞)/(2∗ − 1) ]‖𝑢‖𝜇

2

Ω

 

We get 

I(u)  ≥[((𝑞 − 1)/2𝑞) + ((2∗ − 1)/2∗𝑞)((2 − 𝑞)/(2∗ − 1)) ]‖𝑢‖𝜇
2
 

By the fact that 1<q<2 and N≥6, we obtain that 

I(u) ≥ η>0 when έ = ‖𝑢‖𝜇    𝑠𝑚𝑎𝑙𝑙. 

ii) Let t>0, then we have for all Ψ∈ 𝑁𝑟  .   

I (tΨ) =(𝑡2/2) ‖𝛹‖𝜇
2

− (𝑡2∗
/2∗) ∫ |𝛹|2∗

𝑑𝑥 −
Ω

𝜆(𝑡𝑞/𝑞) ∫ 𝑔|𝛹|𝑞𝑑𝑥.
Ω

 

Letting w= tΨ for t large enough, we obtain I(w)≤0.For t large enough we can 

ensure 

‖𝑤‖𝜇   > έ.  Let   and c defined by 

:={ᵧ:[0,1] →   𝑁𝑟  : ᵧ(0) =  𝑢₀⁻ 𝑎𝑛𝑑 ᵧ(1) =  𝑢₀⁺ } 

And 

c:= inf
ᵧ∈𝛤

 max
𝑡∈[0,1]

(𝐼 (ᵧ(𝑡))) 

 If   0< 𝜆 < min (𝜆1  , 𝜆2  ) then, by the Lemma2  and Proposition1  (ii), the 

functional I verifying the Palais -Smale condition in 𝑁𝑟  . Moreover, from the 

Lemmas 3, 9 and 10, there exists 𝑢𝑐   such that I(𝑢𝑐  ) = 𝑐 𝑎𝑛𝑑  𝑢𝑐  ∈ 𝑁𝑟  .  

Thus 𝑢𝑐  ≠  u₀⁻         and  𝑢𝑐  ≠ 𝑢₀⁺   is the third solution of our system such that . 

Since (1.1) is odd with respect u, we obtain that −𝑢𝑐   is also a solution of (1.1). 
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