Journal of Natural Sciences and Mathematics Qassim University, Vol. 11, No. 1, pp 59-67 (January 2018/Rabi II 1439H.)

Gamma Ray Spectroscopic Analysis in infants' milk powder Consumed in Saudi Arabia, Qassim Province, Buraidah.

Saleh A. Alashrah.

Physics department, collage of science, Qassim University salashra@gmail.com; ashrh@qu.edu.sa

Abstract. Infants' milk powder can be used in many countries because it contains vitamins, proteins and minerals, which are essential to grow infants. Therefore, the main objectives of this study were to measure the natural radionuclides concentrations (226 Ra, 232 Th, and 40 K). Gamma ray Spectroscopy, NaI(Tl) detector was used for measuring the radionuclides concentrations ($^{\circ}$ brands for new born till six months. The average radionuclides concentrations were $Y, y \pm y, \cdot t$ BqKg⁻¹, $y, \chi \pm 0.0^{\circ}$ BqKg⁻¹ and 10 N/ $^{\pm}0.0^{\circ}$ BqKg⁻¹ and $^{10}N/^{\pm}0.0^{\circ}$ BqKg⁻¹ and $^{10}N/^{\bullet}0.0^{\circ}$ BqKg⁻¹ and $^{10}N/^{\bullet}0.0^{\circ}0.0^$

Keywords: Infants' Milk Powder; NaI(Tl); 226Ra; Minerals; Trace elements; Ingestion Dose

Saleh A. Alashrah

1. Introduction

Human, animals or plants obtain dose from natural gamma ray radiation when they have been placed in the presence of gamma ray radiation (226 Ra, 232 Th and 40 K) [1-2]. The dose results from the natural radionuclides may transfer from plants or animals to human. The main source of human exposure to radionuclides is consumption food leading to ingestion radiation doses [3].

Breast milk is the optimal source of nutrition for infants because it provides all the essential nutrients for infant health. However, infant's milk powder is usually given for newborn if the breast milk was not enough. The infant's milk powder provides the energy, vitamins, proteins minerals and nutrients that are necessary for optimum growth [4]. In addition, the dairy products are main source of food not only for infant but also for other people as daily diet [5]. The average consumed weight from infant's milk powder per year is about 22.4 Kg [6]. Therefore, the accurate measurement of the radionuclides concentrations in milk is useful for radiation protection purposes. In general, the largest contributors to the ingestion dose resulting from milk and food is 40 K [6]. The dose causing cancer strongly depends on the amount of radionuclides presenting in the milk [2].

The present work aims to estimate the radionuclides concentrations (226 Ra, 232 Th and 40 K) in the milk powdered consumed by newborn (0-6 months) in Saudi Arabia, Qassim Province, Buridah using NaI(Tl) and to calculate the ingestion absorbed dose of radionuclides resulting from formula infant milk.

2. Materials and methods

2.1 radionuclides activity concentrations measurements in infants' milk powder

This study includes fifteen infants' milk powder samples for newborn (0-6 months). They were collected from Qassim local markets in Saudi Arabia during the year of the measurements. The brand, origin, density and expired date of samples were listed in Table 1. The powdered samples were prepared before analysis. The weight of the samples were between 105 gram and 185 gram. Next, the samples were placed in 250 mL polyethylene bottles. They were closed completely at least four weeks to ensure the secular equilibrium presenting between parents and daughters [7-10].

Sample code	Brand name	Origin	Age group (month)	Fat Per 100g	Expired date	Density (g/cm ³)
А	Biomil	Belgium	0-6	26.4	4-2018	0.45
В	Aptamil	Germany	0-6	24.7	17-9-2017	0.45
С	Bebelac	Netherland	0-6	24.5	8-2-2018	0.44
D	Nan	Swiss	0-6	27.7	6-2017	0.45
Е	MaeilMam'ma	Korea	0-6	24.0	11-6-2017	0.45
F	Kabrita	Netherland	0-6	25.5	28-8-2017	0.49
G	Larilac	France	0-6	27.5	19-10- 2017	0.45
н	Fabimilk	Netherland	0-6	29.0	17-11- 2017	0.45
I	S-26 Gold	Ireland	0-6	29.0	29-9-2017	0.44
J	Premium care	France	0-6	26.5	22-9-2017	0.44
K	Lactonic gold	Spain	0-6	27.0	13-9-2017	0.45
L	Primalac premium	Swiss	0-6	27.0	10-10- 2017	0.45
М	Novalac	France	0-6	25.5	16-11- 2017	0.44
N	Blemil	Spain	0-6	25.0	18-11- 2017	0.45
0	Wyeth Illume	Ireland	0-6	29.0	26-6-2017	0.38

Table (1) the brand name, country of origin, production date and density of the selected study samples.

NaI(Tl) detector 3×3 inch with a 1024-chanel computer analyzer was used to measure the natural radionuclides activity (count rate in the environmental samples). It was calibrated using known source such as ⁶⁰Co and ¹³⁷Cs point sources [10]. In order to calculate the radionuclide activity concentration (activity per unit mass) for each gamma-ray photo-peak rely on the secular equilibrium between parents and daughters in the samples, the equation1 was used [11].

$$A = \frac{[N_c - B] \times 100}{\varepsilon \times \eta \times m} \tag{1}$$

Where

N_c is the count rate (cps) for each infants' milk powder

B is the count rate (cps) for background radiation around the detector

 ϵ is the abundance of the γ -peak in a radionuclide

m is the mass of sample

 η is the measured efficiency for each gamma-ray peak observed for the same number of channels. The values of ϵ and η for each isotopes used to calculate the activity concentrations of $^{226}Ra,\,^{232}Th$ and ^{40}K were shown in table 2. The measuring time for gamma-ray spectra was 86400 s.

Saleh A. Alashrah

Equation 2 was used to obtain the Minimum Detectable Limit (MDL) of radionuclides activity concentration [12]. In order to calculate the MDL, an empty polystyrene container was used with same manner as the measured samples to count the background radiation. Any activity concentration of radioisotopes below MDL was neglected (table 2). The time measurements was 86400 s.

$$MDA = \frac{2.71 + 4.65\sqrt{B}}{\varepsilon \times \eta \times t}$$
(2)

2.2 Annual effective ingestion radionuclides dose

To calculate the annual effective ingestion radionuclides dose (D) resulting from the infants' milk powder, equation 2 was used [6,13-16].

$$D = AIE$$
(3)

Where:

D is the annual effective radionuclides dose (Svy⁻¹)

A is the activity concentration of radionuclides in infants' milk powder sample $(BqKg^{-1})$

I is the amount of milk powder taken in one year (Kgy⁻¹) and depends on a given age. Its value is 38 Kg/year for infant.

E is a conversion factor for ingestion radionuclides (SvBq⁻¹)

The conversion factor 'E' depends on both the radioisotopes and the baby age. Its value for infants between 0 and 12 months are 960, 450 and 42 $nSvBq^{-1}$ for ²²⁶Ra, ²³²Th, and ⁴⁰K respectively.

The total dose values for public should be lower than 1 mSv/year as recommended by UNSCEAR-2000 [2].

Table 2. Gamma rays and their related isotopes used to calculate the activity concentrations of $^{226}Ra,\,^{232}Th$ and ^{40}K

		l efficiency for each	ce of the	1 detected
		ray peak (η) (%)	а	DL)
		Tay peak () (%)	$_{\mathrm{ide}}(e)$	
²¹⁴ Pb	351.90			0.14
²¹⁴ Bi	609.30			0.20
²¹⁴ Bi	1120.30			0.57
²¹⁴ Bi	1764.5			0.30
²²⁸ Ac	911.10			0.30
²¹² Pb	238.60			0.11
⁴⁰ K	1460.00			1.40

3. Results and discussion:

3.1 activity concentrations of 226 Ra, 232 Th and 40 K

The activity concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K in the infants' powdered milk samples present in table 3. The average and range obtained results of ²²⁶Ra, ²³²Th and ⁴⁰K were lower than the recommended reference level (50, 50 and 500 Bq/kg). It changed from 0.5 to 3.0 with the mean value 2.1 Bq/Kg for ²²⁶Ra while it was between 1.1 and 2.4 and the average value was 1.6. The highest activity concentration resulting from 40K and its values ranged from 36.2 to154.9. Its mean value was 111.1 Bq/Kg. The highest activity concentration value was from 40K in the sample code K (Lactonic gold) from Spain while the lowest concentration of ⁴⁰K was found in the sample code A (Biomil) from Belgium. The relative contribution to dose due to 40 K was 62 %, followed by the contribution due to 226 Ra and 232 Th as 28.0 %, 10.0 % respectively as shown in figure 1. In order to test the correlations between ²²⁶Ra and ²³²Th and ²²⁶Ra and ⁴⁰K, the obtained concentrations of naturally occurring radionuclides were plotted in the histogram Figure 2. It is noted that a good correlation between ²²⁶Ra and ²³²Th was observed with a correlation coefficient of 0.73, whereas a poor correlations between ²²⁶Ra and ⁴⁰K. Table 4 shows the comparison between the present study and other published papers. The activity concentrations resulting from ²²⁶Ra, ²³²Th and ⁴⁰K in our results were lower than Malaysia and Nigeria [18,19]. When the comparison focuses on ²²⁶Ra and ²³²Th, this study was comparable with Jordan and other study in Saudi Arabia [6, 13]. The activity concentration of ⁴⁰K from this study was higher than the other study in Saudi Arabia and India [15, 20]. However, it was lower than the Jordan, Malaysia and Nigeria [6, 18, 19].

Fig 1: The relative contribution to ingestion dose due to ²²⁶R, ²³²Th and ⁴⁰K in infants' milk powder (newborn till 6 months) Consumed in Qassim province Saudi Arabia

Saleh A. Alashrah

Fig 2: Correlations between (O) ²²⁶Ra with ²³²Th, (●) ²²⁶Ra with 40K in infants' milk powder (newborn till 6 months) Consumed in Qassim province Saudi Arabia

3.2 Annual effective ingestion radionuclides dose

To estimate the annual effective ingestion radionuclides dose (D) in the powdered milk, equation 3 was used. The ingestion dose was ranged from 96.8 to $357.1 \ \mu Svy^{-1}$ with the mean value was $280.0 \ \mu Svy^{-1}$ obtained by the sum of contributions for 226 Ra, 232 Th and 40 K in the selected samples shown in Table (3). The comparison in the ingested dose between our study and other published results are shown in table (4). The average dose in this study was the lowest value except the average dose in Malaysia and Bulgaria [18, 21].

Sample	Average activity concentration (Bq/Kg)			Total annual effective
code	²²⁶ Ra	²³² Th	40 K	ingestion radionuclides dose (μSvy ⁻¹)
А	1.0 ± 0.002	BMDL	61.0±0.4	135.7
В	2.6 ± 0.006	2.4±0.059	82.0±0.5	265.0
С	2.2±0.004	2.2±0.040	60.9±0.3	214.3
D	3.0 ± 0.005	2.3±0.043	114.1±0.5	331.1
E	2.4±0.004	1.8±0.032	133.7±0.6	332.2
F	2.9 ± 0.006	1.7±0.035	138.4±0.8	355.9
G	2.5 ± 0.005	2.1±0.041	125.2±0.6	329.3
Н	2.1±0.004	1.8±0.039	120.4±0.7	300.0
Ι	1.7±0.003	1.3±0.030	109.7±0.6	259.9
J	2.2±0.004	1.7±0.031	110.0±0.5	284.7
К	2.3±0.004	1.4±0.024	154.9±0.7	357.1
L	2.0±0.003	1.4±0.025	151.9±0.6	341.2
М	1.5 ± 0.002	1.3±0.023	139.4±0.6	298.9
Ν	1.9±0.003	1.4±0.023	129.2±0.6	298.1
0	0.5 ± 0.001	1.1±0.019	36.2±0.2	96.8
Average	2.1±0.004	1.6±0.031	111.1±0.5	280.0
Maximum	3.0±0.006	2.4±0.059	154.9±0.8	357.1

Table (3). Activity concentrations (Bq /Kg) of ²²⁶Ra, ²³²Th and ⁴⁰K with the Total annual effective ingestion radionuclides dose (µSvy⁻¹) obtained from infants' powdered milk sample

*BMDL=below minimum detected limit

 0.5 ± 0.001

0.1±0.003

Minimum

IAEA [17]

Table 4: Comparison between the average radionuclides concentrations of ²²⁶ Ra, ²³² Th, 40K, and
Ingestion dose in this study with the published data for infants' milk powder.

540

36.2±0.2

96.8

Region	Average radionuclides concentrations (Bq/Kg)			ingestion dose (µSvy ⁻¹)	Reference
	²²⁶ Ra	²³² Th	⁴⁰ K	D	
Saudi Arabia	9.64	6.77	74.5	183.7	[15]
Kuwait	0.4	0.42	243.5	413	[14]
Malaysia	3.05	2.55	99.1	635.1	[18]
Saudi Arabia	0.46	0.35	234	410.0	[13]
Jordan	0.5	0.78	296.8	332.0	[6]
India	2.5		34.35		[20]
Nigeria	23.07	4.35	831.6		[19]
Bulgaria	1.63	5.0	53.1	150.0	[21]
Saudi Arabia	2.1	1.6	111.1	280.0	Present study

Conclusion

Activity concentrations of naturally occurring radionuclides (²²⁶Ra, ²³²Th and ⁴⁰K) consumed by infant between 0 to six month in Saudi Arabia was determined using gamma ray Spectroscopy, NaI(Tl) detector. The average activity concentration of ²²⁶Ra, ²³²Th and ⁴⁰K in all the brands of infants' powdered milk were 2.1((3.0-0.5), 1.6(2.4-0.1) and 111.1(154.9-36.2) Bqkg⁻¹ respectively. The radioactivity values were lower than the recommended limit determined by ICRP-60 and UNSCEAR. In addition, these values lie within the most values of the corresponding radionuclides as measured from different brands of milk around the world. The mean annual effective dose due to the ingestion of radionuclides in infants' powdered milk was estimated to be well below the ICRP recommendation.

References

- [1].Tzortzis, M., et al., Gamma radiation measurements and dose rates in commercially-used natural tiling rocks (granites). Journal of Environmental radioactivity,. **70**(3): p. 223-235 (2003).
- [2].UNSCEAR, Sources and effects of ionizing radiation: sources. Vol. 1.: United Nations Publications (2000).
- [3].Chauhan, R.P. and A. Kumar, *Soil to plant transfer of alpha activity in potato plants: impact of phosphate fertilizers.* Journal of Environmental Health Science and Engineering, **13**(1): p. 45 (2015).
- [4].Abollino, O., et al., Speciation of copper and manganese in milk by solid-phase extraction/inductively coupled plasma-atomic emission spectrometry. Analytica Chimica Acta, 375(3): p. 299-306 (1998).
- [5].Buldini, P.L., S. Cavalli, and J.L. Sharma, Matrix removal for the ion chromatographic determination of some trace elements in milk. Microchemical Journal. 72(3): p. 277-284 (2002).
- [6].Ababneh, Z.Q., et al., Measurement of natural and artificial radioactivity in powdered milk consumed in Jordan and estimates of the corresponding annual effective dose. Radiation protection dosimetry. 138(3): p. 278-283 (2009).
- [7].Alashrah, S. and A. El-Taher, Assessment of natural radioactivity level and radiation hazards in soil samples of Wadi Al-Rummah Qassim province, Saudi Arabia. Journal of Environmental Biology. 37(5): p. 985 (2016).
- [8].Alashrah, S. and A. El-Taher, Gamma Spectroscopic Analysis and Associated Radiation Hazards Parameters of Cement Used in Saudi Arabia. Journal of Environmental Science and Technology. 9(2): p. 238 (2016).
- [9].Alashrah, S., Radiation properties for red soil in Qassim province, Saudi Arabia. Journal of Radiation Research and Applied Sciences 2016. 9(4): p. 363-369.
- [10].Alashrah Saleh., El-Taher Atef., Assessing Exposure Hazards and Metal Analysis Resulting from Bauxite Samples Collected from a Saudi Arabian Mine. Pol. J. Environ. Stud. 27:(3) 959-966 (2018)

- [11].Beretka, J. and P. Mathew, Natural radioactivity of Australian building materials, industrial wastes and by-products. Health physics, 1985. 48(1): p. 87-95.
- [12].Xhixha, G., et al., The worldwide NORM production and a fully automated gamma-ray spectrometer for their characterization. Journal of Radioanalytical and Nuclear Chemistry. 295(1): p. 445-457 (2013).
- [13].Al-Zahrani, J., Natural radioactivity and heavy metals in milk consumed in Saudi Arabia and population dose rate estimates. Life Science Journal. 9(2): p. 651-656 (2012).
- [14].Alrefae T., Nageswaran TN., Al-Failakawi A., Radioactivity of long lived gamma emitters in milk powder consumed in Kuwait and estimates of annual effective doses. Kuwait Journal of Science and engineering.39(1): p. 143-158 (2012).
- [15].Alamoudi, Z.M., Assessment of natural radionuclides in powdered milk consumed in Saudi Arabia and estimates of the corresponding annual effective dose. J. Am. Sci. 9: p. 267 (2013).
- [16].ICRP, International Commission on Radiological Protection. Age dependent doses to members of the public from intake of radionuclides. Part5: Compilation of ingestion and inhalation coefficients ICR Publication72, Oxford. 1996, IOP Publishing.
- [17].Altzitzoglou T., Bohnstedt A., Characterisation of the IAEA-152 milk powder reference material for radioactivity with assigned values traceable to the SI units. Applied Radiation and Isotopes. 66 (11):1702–1705 (2008)
- [18].Uwatse, O.B., et al., Measurement of natural and artificial radioactivity in infant powdered milk and estimation of the corresponding annual effective dose. Environmental Engineering Science, 32(10): p. 838-846 (2015).
- [19].Osibote, O., et al., Radioactivity in milk consumed in Nigeria 10 years after Chernobyl reactor accident. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 422(1): p. 778-783 (1999).
- [120]. Shanthi, G., et al., *Natural radionuclides in the South Indian foods and their annual dose*. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 619(1): p. 436-440 (2010).
- [21]. Kamenova-Totzeva, R., et al., Radionuclides Content in Pasteurized Cow Milk: Dose Estimation. Radiation protection dosimetry. 174(4): p. 464-470 (2016).