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§1.1 Abstract 
 
In this paper, we develop a heuristic algorithm for solving a Capacitated Vehicle Routing Problem 

(CVRP). In general, VRP is a well-known problem in which a number of vehicles are located at a central 

depot; each vehicle has a limited capacity and has to serve a number of geographically dispersed 

customers whose actual demands are known in advance. The contribution of the paper is to implement the 

Clarke and Wright Saving (CWS) algorithm and Iterated Greedy (IG) algorithm that used in the research 

efforts. Our results show that both CWS and IG combined with randomisation is a powerful algorithm for 

the well-known benchmark instances problem. Also, the proposed methodology is capable of finding 

useful trade-off solutions for the problem. We report the best solutions for 55 instances. Therefore, the 

results obtained are quite competitive when compared to the other algorithms found. Also, the results at 

best have been highly promising and useful for decision makers.  

 

Keywords: The Capacitated Vehicle Routing Problem (CVRP), Randomized Clarke and Wright Saving 

algorithm (CWS), and Randomized Iterated Greedy algorithm (IG).  

 

§1.2 Introduction  
 
The Vehicle Routing Problem introduced by [2]. The decision maker has to serve a given set of n 

customers with known demand from s single depot using a given number of k of vehicles. Also, 

these vehicles have the same capacity. Some constraints have to applied such as each customer 

has to be served by exactly one vehicle, actual demand of each customer cannot be split and have 

be entirely satisfied using exactly one vehicle. The total demand assigned to each vehicle cannot 

exceed the vehicle capacity. The main objective of the problem is to minimize the total distance 

traveled by the vehicles. We refer to [2], [3], [14], [13], and [20] for a survey of vehicle routing 
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applications, model extensions, and solution methods. There are many researches that study 

probabilistic or randomized algorithms. For example, [10] has a review of biased randomization 

of heuristic. The aim of Angel (2017) paper is in the subset of randomized algorithms that include 

some type of bias in any of their random processes. [10] “A randomized algorithm uses random 

bits to make random choices during its execution. Unlike deterministic algorithms, different 

solutions are obtained every time the procedure is executed. The most successful approaches to 

solve large combinatorial problems take advantage of this feature to perform several iterations 

and collect the best overall output”. Iterated Greedy algorithm is a meta-heuristic approach that is 

able to solve combinatorial optimization problems by iterating over greedy constructive 

heuristics. This algorithm is well-known in the literature of different fields such as the computer 

science and operational research, due to their simplicity and promising results. One of the key 

advantages of using Iterated Greedy algorithm is the use of a straightforward extension of an 

iterated local search to the context of greedy construction heuristics. In addition, it obtains good 

results in several applications.  

 
The contribution of this paper is to implement/develop Iterated Greedy algorithm in order to solve 

Capacitated Vehicle Routing Problem. From this model, an efficient Iterated Greedy Algorithm 

composed of destruction and reconstruction procedures is implemented to generate feasible 

solutions. We added randomization to further improve the solution quality given by the 

destruction-reconstruction method. Empirical work indicates the effectiveness of the proposed 

heuristic. This paper is organized as follows: in Section 1.3 we discuss some literature about work 

done on Iterated Greedy algorithm. In Section 1.4, we propose the methodology in more detail in 

order to solve the problem. Then, Section 1.5 shows the computational results. Finally, in Section 

1.6, we draw some conclusions based on the results of this work. 

 

§1.3 Literature review 
 
The vehicle routing problem and scheduling is considered as a very active research area on 

heuristic, meta-heuristic and hyper-heuristic techniques, mainly because the difficulty 

encountered by exact methods to find the optimal or near optimal solution for a medium or large 

instance. Some of these approaches are able to provide excellent effectiveness and efficiency at 

the expense of being utterly complicated. Iterated Greedy algorithm is considered as one of the 

interesting approaches that are used to solve these instances. According to [19], the Iterated 

Greedy algorithm has been proposed in order to solve scheduling problems and they explained 

the steps of the approach with more details. From review of the computational results, the results 
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display its great promise and the overall performance of this approach can be considered as a very 

good effort. In [7] aimed to deal with the minimization of the maximum completion time of the 

jobs. They tried to solve a problem called unrelated parallel machine scheduling, where the 

processing time depends on a machine. Also, they presented a set of simple Iterated Greedy local 

search based meta-heuristics that generated very good solutions in terms of short amount of time, 

as shown in the computational results. Different research proposed Iterated Greedy algorithm to 

find the minimization of total weighted completion time for flexible flow line with sequence 

dependent set-up times [16]. They also find their final results are effective and that is 

demonstrated through comparison.   

 

[9] proposed a variable greedy algorithm with differential evolution in order to find a solution for 

the no-idle permutation flow-shop scheduling problem. The fundamental idea behind this 

approach is to apply differential evolution to determine two main parameters for the Iterated 

Greedy algorithm. In paper [17] they used an effective iterated greedy algorithm for mixed no-

idle permutation flow-shop scheduling problem. A generalization of both the regular permutation 

flow-shop and no-idle permutation flow-shop scheduling problem has been proposed for the first 

time in this paper. The idea behind no-idle flow-shop is that machines cannot be empty after 

finishing one job and before starting the next job. Therefore, start times of jobs have to be 

delayed in order to guarantee this constraint. They generated a good initial solution by using an 

NEH heuristic. Also, they implemented a local search to emphasize intensification and 

exploration in the Iterated Greedy algorithm. Iterated Greedy algorithm can be used to solve other 

problems such as Market Segmentation Problem with Multiple Attributes which is proposed by 

[11].  

 

Nowadays, Iterated Greedy algorithm has been successfully implemented in order to deal/solve a 

variety of combinatorial optimization problems and other case studies. [8] proposed Iterated 

Greedy algorithm for solving the blocking flow-shop scheduling problem (BFSP) with the make-

span criterion. In terms of the computational results, the performance of the Iterated Greedy 

algorithm depended on the speed-up methods employed. Also, the results showed that the Iterated 

Greedy algorithm with the speed-up methods is equivalent to the best performance algorithms 

from the literature.  [1] introduced an effective Iterated Greedy algorithm for unrelated parallel 

machines with different capacities and unequal ready times in order to minimize the make-span. 

The problem can be described as follows: a machine can process a number of jobs simultaneously 

as a batch ready time, as long as capacity of the machine has not been exceeded. The results that 
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obtained in the paper showed that the Iterated Greedy algorithm has outperformed compared to 

other meta-heuristics for similar problems. [6] attempted to solve the make-span permutation 

flow-shop problem by using an Iterated Greedy algorithm with optimization. The main step of 

this paper is to explore the possibility of re-optimizing partial solutions that achieved, after the 

solution destruction step, in an Iterated Greedy algorithm for permutation flow-shop problem.    

 

Recently, many researchers implemented Iterated Greedy algorithm with different methods in 

order to solve a specific problem. For example, [12] presented an Iterated Greedy algorithm for 

solving a market segmentation problem with multiple attributes. [15] proposed IG algorithm in 

order to solve the industrial problem, especially in reprocessing shops of remanufacturing 

systems. The aim of using this approach in this problem is to minimize the total family flow time 

for job-shop scheduling, with job families and sequence-dependent set-ups. An effective IG 

algorithm has been used to solve flow-shop scheduling problems with time lags [21].        

 

§1.4 Methodology     
 
 
The proposed algorithm in this paper is based on Iterated Greedy algorithm. Iterated Greedy 

algorithm considers as one of heuristic that used to solve combinatorial optimization problems by 

iterating over greedy constructive heuristic. [19] has introduced the Iterated Greedy algorithm in 

order to solve the scheduling side. The process in this paper is to use randomization into the 

Iterated Greedy algorithm to solve the capacitated vehicle routing problem. Iterated Greedy 

algorithm generates a sequence of solutions by iterating over greedy constructive heuristics using 

two main phases: namely destruction and construction. During the destruction phase some 

customers are removed from a constructed complete candidate solution. Then, the construction 

procedure applies a greedy constructive heuristic to construct a complete solution. Iterated 

Greedy iterates over these steps until some stopping criterion is met. The aim in this paper is to 

try to extend the work by adding a randomization inside the Iterated Greedy algorithm in order to 

improve the solutions of the problem.   

 

The probability can be assigned to the destruction phase then continue to implement the IG 

algorithm approach. The above explanation of the IG algorithm is when the demand is 

deterministic and the safety stocks in all vehicles are not considered. The solutions for the 

deterministic case were computed using the IG algorithm. Randomization was then added by 
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assigning different probabilities to each potential customer. Customers with high probability are 

then chosen first, before customers with low probability, although all customers are selected in 

the end. It is also important to note that in doing so, an attempt is made to avoid the issue of 

selecting the appropriate size of the restricted list, and to provide a guarantee that the probabilities 

of being selected are always proportional to the position of each customer in the route.  

 
 

§1.5 Computational results 
 

In this part, the methodology described in this paper was implemented as a Java application. In 

the experiments, a Macintosh HD on 2.3 GHz Intel HD Graphics 4000 1024 MB with Intel Core 

i7 with 4 GB 1600 MHz DDR3 was used to perform the computational experiments. The instance 

considered a set of 55 classical Capacitated Vehicle Routing Problem instances, namely instances 

“A”, “B”, “E”, “F”, and “P”. The main characteristics of these instances, such as vehicle capacity, 

customer location, number of both vehicles and customer are described online at 

https://www.coinor.org/SYMPHONY/branchandcut/VRP/data/index.htm.old. We compare the 

performance of Randomized Clarke and Wright Saving algorithm to Randomized Iterated Greedy 

local search algorithm for the Capacitated Vehicle Routing Problem benchmark instances. To 

facilitate the comparison, we utilize the same problem instances as in the website. The name of 

each problem instance indicates the number of customers (including the depot) and the number of 

vehicles that can be used. For example, A-n32-k5 indicates that A represents the instance class 

and 32 presents the number of customers in this class, whilst 5 presents the number of the 

vehicles that will be used to serve these customers.  

 

In this paper, several computational experiments designed to test the Vehicle Routing Problem 

instances were conducted. During the implementation, the vehicle capacity has been considered 

as 100% and also safety stock has not been used, therefore there is a chance that solutions can 

suffer from route failures. Tables below summarise the complete computational results of both 

approaches for all 55 instances; the best results were found to use two different approaches for 

solving VRP with the same well-known benchmark problems. The following abbreviations are 

used:  

 RIG: Randomised Iterated Greedy algorithm. 

 RCWS: Randomised Clarke and Wright algorithm. 
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The results achieved from the preliminary analysis of both approaches are shown in these tables 

and the second column of the table shows the name of the instances used for all the approaches. 

The randomisation is used to improve the solutions in both approaches. Column 3 is related to 

solutions obtained with the Randomised Clarke and Wright Saving algorithm (RCWS). The third 

column is related to solutions obtained by Randomised Iterated Greedy algorithm (RIG) 

approach. The randomisation is used in both CWS and IG to improve the solutions for the 

instances. The last column shows the % improvement between the RCWS and RIG algorithm. 

Comparative results between the approaches are shown in the last column whilst the bold 

numbers represent the instances that improved. The improvement rate is defined as: 

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒 =   

 
ி ௦௧ ௦௨௧ ି ௩௨௦ ௦௧ ௦௨௧

 ி ௦௧ ௦௨௧
 ∗  100. The bottom row in 

Table 2 shows the average value of the results for each approach for all instances of the problem. 

Overall, our algorithm was able to solve instances with up to 121 customers. Furthermore, a 

comparison of the solutions is shown; the solution for the RIG is actually able to outperform the 

solution related to the RCWS. In addition, the standard version of RIG approach improves the 

solutions for the RCWS on all 55 instances.  

 

As presented in Tables 1 and 2, the last columns are the most interesting, which shows the 

improvement between the approaches. In the experiments on 55 instances, using IG with 

randomisation led to an improvement in the solutions and thus improved all instances compared 

to the other approach. From the tables, in terms of the improvement column, in 36 out of 55 

instances the improvement of the total cost is less than 1%, in 12 out of 55 instances it is more 

than 1%. For example, for instances that produced better results, A-n38-k5, A-n45-k6, B-n68-k9, 

F-n72-k4 and P-n101-k4 were found to be the best solutions and obtained results of above 1%. 

However, 7 out of 55 instances had no improvement. Notice that the smallest improvement, that 

is zero, has been omitted from the calculation of the average in the last row. In addition, the 

average value of the results between RCWS and RIG for all instances of the problem is equal to 

0.74%. Therefore, the average solution by RIG approach showed better results than the other 

approach.     
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Name of instance RCWS RIG GAP 

1 A-n32-k5 787.8 787.8 0.00% 

2 A-n33-k5 665.8 663.8 0.30% 

3 A-n33-k6 744.3 742.9 0.18% 

4 A-n37-k5 679.8 674.2 0.83% 

5 A-n38-k5 747.1 735.9 1.52% 

6 A-n39-k6 835.4 834.3 0.13% 

7 A-n45-k6 968.7 957.1 1.21% 

8 A-n45-k7 1156.8 1154.6 0.19% 

9 A-n55-k9 1082.7 1080.1 0.24% 

10 A-n60-k9 1377.4 1371.7 0.41% 

11 A-n61-k9 1058 1051 0.66% 

12 A-n63-k9 1654 1642.3 0.71% 

13 A-n65-k9 1197.5 1197.5 0.00% 

14 A-n80-k10 1802.1 1797.2 0.27% 

15 B-n31-k5 676.1 676.1 0.00% 

16 B-n35-k5 970.4 963.7 0.69% 

17 B-n39-k5 556.4 553.4 0.54% 

18 B-n41-k6 840.3 837.6 0.32% 

19 B-n45-k5 757.2 755.2 0.26% 

20 B-n50-k7 748.8 745 0.51% 

21 B-n52-k7 762 760.5 0.19% 

22 B-n56-k7 729.3 720.6 1.20% 

23 B-n57-k9 1609 1604.3 0.29% 

24 B-n64-k9 887.6 877.5 1.15% 

25 B-n67-k10 1070 1056.2 1.30% 

26 B-n68-k9 1308.3 1294.4 1.07% 

27 B-n78-k10 1263.5 1257.3 0.49% 

Table 1. Comparison of methodologies for 55 selected VRP instances 
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Name of instance RWCS RIG  GAP 

28 E-n22-k4 375.3 375.3 0.00% 

29 E-n30-k3 511.3 506.7 0.90% 

30 E-n33-k4 843.1 842.8 0.03% 

31 E-n51-k5 540.7 534.2 1.21% 

32 E-n76-k7 714.7 705.8 1.26% 

33 E-n76-k10 867.3 864.5 0.32% 

34 E-n76-k14 1055.7 1045.6 0.96% 

35 F-n45-k4 728 724.1 0.53% 

36 F-n72-k4 249.3 236.2 5.54% 

37 F-n135-k7 1165 1160 0.43% 

38 M-n101-k10 833.5 824.5 1.09% 

39 M-n121-k7 1059.3 1054.7 0.43% 

40 P-n19-k2 216.1 212.7 1.59% 

41 P-n20-k2 217.4 217.4 0.00% 

42 P-n22-k2 218.7 217.9 0.36% 

43 P-n22-k8 588.8 588.8 0.00% 

44 P-n40-k5 463 462.9 0.02% 

45 P-n50-k8 635.3 632.7 0.41% 

46 P-n50-k10 708.9 705.3 0.51% 

47 P-n51-k10 747.6 746.7 0.12% 

48 P-n55-k7 2441.7 2441.7 0.00% 

49 P-n55-k15 960.6 959.6 0.10% 

50 P-n60-k10 765.8 763.2 0.34% 

51 P-n65-k10 820.7 812.6 0.99% 

52 P-n70-k10 853.6 846.4 0.85% 

53 P-n76-k4 632 626.8 0.82% 

54 P-n76-k5 655.5 651.8 0.56% 

55 P-n101-k4 720.1 710 1.42% 

 Average 864.09 859.32 0.74% 

Table 2. Comparison of methodologies for 55 selected VRP instances 
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The above chart shows the best solution obtained by both Randomised CWS and Randomised IG for 

several instances of the total costs. In brief, the detail along the left side of the graph above shows the 

total costs. Whereas the bottom of the graph above shows the different classes from the instances. The 

chart presented the full comparison between total costs obtained by these two approaches. In 

summary, it is apparent that there was a slight improvement in the solutions to the instances, such as 

B-n64-k6. Also, a clear improvement can be seen in the results using the RIG algorithm; this 

approach out-performs the other approach in the improvement of solutions. As shown in the 

preliminary result tables it compares two types of results which are Randomized Clarke and 

Wright Saving algorithm (RCWS) and Randomized Iterated Greedy algorithm (RIG). We 

finished the section verifying that the RIG provided better results to the problem than RCWS. It is 

significant to notice that time is considered to be an important part and for this reason this 

methodology will use the local search implicitly with time constraint in the future work in order 

to improve the solutions that were obtained by this method.  

 
 

§1.6 Conclusion 
 
This paper has introduced a randomisation into IG algorithm. In this paper, IG algorithm has been 

extended by using randomisation. Also, randomised IG has been proposed and analysed the solutions 

on these instances. In terms of the experiments, the randomised parallel version of Clarke and Wright 

algorithm provided results not as good as Randomised IG algorithm, as can be seen in the preliminary 

results tables where it compares two types of results. In this paper, it is significant to note that results 

of these algorithms do not employ any local search process. Future work will consider different 

variants such as stochastic demand. In practice, this type of problem occurs when customer demand is 

not known in advance, but is known when the vehicle arrives at a customer location.    
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