
12

Journal of Natural Sciences and Mathematics
Qassim University, Vol. 13, PP 12-23 (January 2020)

Solving Capacitated Vehicle Routing Problem by Iterated Greedy (IG) algorithm

Abdulwahab Almutairi

School of Mathematics, University of Qassim

a.abdulwahab.a@gmail.com

§1.1 Abstract

One of most significant logistics problems in the field of transportation and distribution is the Capacitated

Vehicle Routing Problem (CVRP). The VRP has received particular attention for many years. In general,

the problem considers the vehicles routing with limited capacity from a central depot to a set of

geographically dispersed customers, where real (actual) demand of each customer is independent and

known in advance. To the best of our knowledge, there is no research reported in the literature that

combines CWS and IG in order to solve the CVRP. Also, safety stock and reloading/restocking have been

considered in order to minimize the total cost of the problem. The contribution of the paper is to compare

the CWS with IG. Also, the methodology includes two stages. In the first stage, optimal a-priori routes are

generated using CWS and then the methodology has been extended by applying IG algorithm. In addition,

when a vehicle capacity is exceeded, recourse actions have to be planned/designed to ensure the feasibility

of solutions in case of route failure. In conclusion, our computational experiments on benchmark instances

show that the IG is able to generate better solutions than CWS.

Keywords: The Capacitated Vehicle Routing Problem (CVRP), Clarke and Wright Saving algorithm

(CWS), and Iterated Greedy algorithm (IG).

§1.2 Introduction

Iterated Greedy (IG) algorithm considers one of the heuristics that has been implemented in the hybrid

flow-shop scheduling side with the aim of minimising the make-span, and it is very simple to apply as

shown by the experimental results. [10] has successfully developed several heuristics for solving the flow-

shop scheduling problem such as IG algorithm. The IG algorithm includes two steps. In the first step, an

initial solution is generated and in the second step, two phases will repeated named destruction phase,

where several customers are chosen from the current solution and construction phase, and the chosen

13

customers are inserted into the sequence, until the stopping criteria are met. In recent years, many

algorithms have emerged to address problems such as scheduling and transportation and obtain better

solutions. IG algorithm has been applied in the scheduling problems. Therefore, the aim of this paper is to

apply IG algorithm in the transportation side in order to minimize the total route costs. However, when a

vehicle capacity is exceeded, recourse actions (reloading/restocking) have to be planned/designed to ensure

the feasibility of solutions in case of route failure. Transportation plays a significant role in our daily lives.

Researchers have used different targets to measure and obtain optimal solutions. In recent decades,

extensive research on VRP and associated scheduling problems has been carried out. Also, several

solutions have been proposed in the literature for the optimal solution to VRP.

In general, VRP can be described as a problem that arises when designing either optimal collection or

delivery routes from a central depot to a set of geographically dispersed customers where each customer

has a non-negative demand that is served by a single vehicle. A number of identical or heterogeneous

vehicles located in a central depot with identical capacity, can be operated by a number of drivers to

distribute goods along the most appropriate road network. The main objective of the VRP is to minimize

the total route cost. Here are the most traditional types of constraints that have to be satisfied:

 Each vehicle route starts at the central depot and returns at the same depot;

 Each customer is visited exactly once by one vehicle;

 The total demand of any vehicle route cannot exceed the maximum vehicle capacity.

§1.3 Literature review of IG

IG algorithm is one of the most significant heuristic methods that can deal with scheduling problems. Also,

IG algorithm has been implemented to solve the flow-shop problem combined with other methods and the

computational results have shown its performance. Papers [9] and [10] proposed an IG algorithm to solve

different aspects of the flow-shop problem. For instance, IG algorithm can be proposed for solving a

complex flow-shop problem by minimising the total weighted tardiness and minimising the maximum

completion time. The fundamental concept behind using an IG algorithm is to iterate over constructive

algorithms and the fundamental concept behind using Iterated Local Search (ILS) is that it resides in

iterating over local searches in a particular way. Adding ILS into an IG algorithm can make the similarities

between these algorithms become more pronounced. [9] proposed an IG algorithm to achieve a solution for

the flow-shop problem with sequence dependent setup times, whereby the setup time depends on the job

previously processed on each machine. Also, the ability of the proposed IG algorithm in finding feasible

solutions within reasonable computational times, which are near to the optimum solutions, make it

justifiable to use in the flow-shop problem with sequence dependent setup times. A simple and effective IG

algorithm based on an NEH constructive heuristic has been implemented by [10] to solve the Permutation

Flow Shop Scheduling Problem (PFSP). Also, both IG algorithm with and without ILS obtained good

14

solutions. They provided a complete comparative evaluation of the effectiveness and efficiency of this

method.

In addition, the IG algorithm is considered as a well-known algorithm and it provides very good results in a

variety of applications. Many researchers proposed the IG algorithm to solve problems such as PFSP

especially on flow-shop problem [10], so that the following sentences will present the IG algorithm

process. The IG algorithm has basic steps: destruction, construction, optimisation, and acceptance criteria.

The initial solution has to randomly generate a sequence of solutions by using the NEH algorithm, then the

two main phases of destruction and construction will be implemented. Firstly, in the destruction phase,

some solution components are selected and removed from a previous solution. The second step is the

construction phase; after removing components from the destruction phase, the construction procedure is

applied by re-assignment to different positions to achieve the minimum cost. This has to be done for each

removed component. Local search can be added to improve each solution that is generated in the second

step. The last step is the acceptance criteria, and the new solution is compared with the previous solution to

choose the better solution with no constraint violation. [10] presented the pseudo code of IG algorithm with

local search in order to solve the PFSP. Also, they used the random number distributed uniformly between

[0, 1] to check the termination criterion, (the demon-like criterion). Thus, if the demon-like criterion is

greater-than or equal-to the random number, then they replaced the current list of customers with the old

one. They also showed the code implementation of an iterative improvement procedure, using the insertion

neighbourhood algorithm, in order to improve the final solutions.

Some researchers have integrated an IG algorithm with other methods in order to solve the scheduling

problems. For example, unrelated parallel machine scheduling was solved by using an IG algorithm based

meta-heuristic that is able to find good quality solutions in a very short time [2]. The aim was to minimise

the maximum completion time of the jobs. A variable neighbourhood descent algorithm is used to obtain an

initial solution and it applied Insertion and Interchange local searches till local optimum is achieved. After

that, IG algorithm is implemented to improve the solution. From the computational results discussion, they

are able to select the jobs and machines in a smart way to achieve one of the good solutions. A

comprehensive benchmark test of 1400 instances was tested in order to compare all proposed algorithms

against state-of-the-art methodologies. Furthermore, computational results showed that these solutions are,

most of the time, better than the current state-of-the-art methodologies, by a statistically significant margin.

[3] presented two variants of both ILS and IG algorithm to minimise the completion time in two machines

PFSP. They have also taken a step further than previous researches providing a new priority rule based on

the availability of two machines for the total completion time under time lag. Later, IG algorithm has been

combined with simulated annealing by [1] to minimise the total completion time for the two machine flow-

shop scheduling problem. Two of the advantages of using these two methods are that it is easy to deal with

15

during the implementation; it also provides a compromise between intensification and diversification, that

improves the solution quality by accepting better solutions. They used simulated annealing to generate

initial solutions then they applied IG to obtain the goal. The characteristic of this method is that it can

accept the solutions that improve the current solution and also accept solutions that deteriorate the current

solution. The idea behind IG is to generate a sequence of solutions and then choose the best solution.

The IG algorithm was proposed to solve different problems and it has shown to reach excellent

performance on the permutation flow-shop problem with different criterion such as time dependence.

Furthermore, it is able to improve some of the best known solutions on the permutation flow-shop problem.

A large number of scheduling problems can benefit from ideas underlying IG algorithm. [5] proposed a

modified version of IG algorithm to minimise the total cost, along with duration of convergence for task

assignment problem. Also it capitalises on the efficacy of the Parallel Processing paradigm. The main target

of the modification is summarised as follows: (1) to enhance the quality of assignment in every iteration,

(2) to utilise the values from the preceding iterations and (3) at the same time assigning these smaller

computations to internal processors to hasten the computation.

[6] proposed a new way: multi-objectives IG algorithm to solve track scheduling in cross-dock problems

with temporary storage. For this problem a multi-objectives IG algorithm employs advanced features such

as modified crowding selection, restart phase and local search. From the performance point of view, this

proposed method showed better solutions and outperformed the other methods. Multi-objectives IG

algorithm can deal with a population of non-dominated outcomes as a working set, instead of just a single

outcome. An IG algorithm was developed by [8] to solve a job scheduling problem with zero buffer

constraints and with two known variants: the block job shop scheduling with swap and without swap. A

comparison with recent published results showed that an IG algorithm improved the best known solutions

in a literature review on benchmark instances. From the computational results, it is also important to notice

that the IG has a broad applicability since it can be easily applied to any complex scheduling problem

modelled by means of the alternative graph formulation. Despite the massive research effort on the VRP

and the success of using IG in some Combinatorial Optimisation Problems, there has not been any

published paper on the use of IG algorithm to solve the VRP and its variants. For this reason, this algorithm

has special attention in order to implement IG algorithm on VRP.

§1.4 Proposed Methodology

The IG algorithm was presented by [10] for the permutation flow shop scheduling problems. It has been

applied successfully in different scheduling and other problems. According to [10], the IG algorithm is

conceptually simple and efficient; it is based on generating a sequence of solutions by iterating over a

greedy construction heuristic using two main phases, which are: destruction and construction. In the

16

destruction phase, a number of solution elements are randomly selected to be removed from a previously

constructed complete candidate solution. In the second phase, the construction procedure is applied, in

which the elements that previously removed in the destruction phase are re-inserted into the set of

remaining elements until all candidates are inserted. An acceptance criterion is applied once a candidate

solution has been completed, to decide whether the new solution will replace the current solution. The

process of IG is then iterated over these steps until a stopping criterion is met. A framework of the IG

algorithm is given in Figure 1, where Clarke and Wright Saving algorithm (CWS) has generated the initial

solution, and where 𝑑 represents the randomly chosen number of the customers.

In any IG algorithm, there are two main phases: destruction and construction. In the destruction phase,

there are two sets 𝜋஽and 𝜋ோ, where 𝜋஽ represents the set of 𝑑 customers that select randomly from the

current solution, and 𝜋ோ is the set of the remaining customers. The first sequence 𝜋஽ with size 𝑑 of

customers is the original solution without the removed customers. The second sequence with the size 𝑛 −

𝑑 of customers is denoted as 𝜋ோ, including the removed customers in the order. The construction procedure

begins with 𝜋஽ and inserts the first customer of 𝜋ோ into all the possible locations 𝑛 − 𝑑 + 1 of 𝜋஽. The best

position for 𝜋ோ in the augmented 𝜋஽ sequence is the one that provides the smallest total cost 𝐶௠௔௫ . The

second customer is then considered and the process is repeated until 𝜋ோ is empty. Figure 2 presents the

procedure for destruction and construction in more detail. After finishing the destruction and construction

phases, the acceptance criterion is used to consider whether the new sequence solution obtained is accepted

or not as the current solution for the next iteration. One of the simplest acceptance criteria is to accept a

new sequence only when the sequence achieves a better solution than the previous solution.

The IG approach presented above has been used to solve the VRP instances when all the information about

each instance is known already. Many common restrictions that are either related to the vehicles or the

Procedure Iterated Greedy _for _VRPSD
π := GenerateInitialSolution();
π

best
= π

While (NotTermination)
 π

1
=DestructionConstruction(π, d)

 if (f (π
1
) < f(π)) then

 π
1
= π

 if (f (π) < f (π
best

)) then

 π
best

 = π

endwhile
return
endprocedure

Figure 1. Iterated Greedy Algorithm

17

customers are applied. For example, each vehicle has a limit capacity, each customer has a specific demand

and the visits to each customer cannot be split twice. In order to meet the requirements of the route design,

the objective function of minimizing the cost should be considered. This situation is termed as a

deterministic case. This approach was also implemented in this study for a number of VRP instances from

the literature.

§1.5 Computational results

In this section, the methodology described in this paper was implemented as a Java application. In the

experiments, a Macintosh HD on 2.3 GHz Intel HD Graphics 4000 1024 MB with Intel Core i7 with 4 GB

1600 MHz DDR3 was used to perform the computational experiments. The iterated greedy algorithm was

tested in several instances originally developed for the Capacitated VRP (CVRP). A number of tests of

well-known standard benchmarks described in the literature, for problems related to CVRP, were

described, and the outputs obtained for total cost of this approach were compared between IG algorithm

and randomised IG algorithm. A set of 55 classical CVRP instances are considered, namely instances “A”,

“B”, “E”, “F”, and “P”. The key characteristics of the test problems are described online at

https://www.coinor.org/SYMPHONY/branchandcut/VRP/data/index.htm.old. For each instance, the

location of the customer in terms of x and y coordinates and the number of the vehicles, were previously

known. In addition, the central depot is located at (0,0) and the Euclidean distance was used. The numbers

of both customers and vehicles can be inferred from the name of each instance in the benchmark problems.

The vehicles’ capacity has to be similar for all the available fleet serving the customer demand. For

example, P-n101-k4 indicates that P represents the instance class and 101 represents the number of

customers in this class, whilst 4 represents the number of the vehicles that will be used to serve these

customers.

Procedure Destruction_Construction (π, d)
Set 𝜋஽ empty, % Destruction
for 𝑖 ← 1 to 𝑑 do
 𝜋஽ ← the set of d selected customer randomly
endfor
 𝜋ோ ← the remaining set of customers
for 𝑗 ← 1 to 𝑑 do % construction
 πୠୣୱ୲= best cost obtained after inserting customer from 𝜋ோ in all possible

positions of 𝜋஽
endfor
end

Figure 2. Destruction and construction

18

In this paper, several computational experiments designed to test the VRP instances were conducted. The

vehicle maximum capacity has been considered as 100%. However, since no safety stock is used, there is a

chance that solutions can suffer from route failures. Therefore, the recourse actions have been used in order

to serve all customer demand. An example of recourse action is that the vehicle can return to the central

depot when it is full to unload and then resume collections as planned. Another example is that the vehicle

can return to the central depot when it is full, as in the previous example, and then re-optimise the

remaining part of the planned route. Table 1 and 2 summarises the complete computational results of

Clarke and Wright Saving algorithm and Iterated Greedy Algorithm for all 55 instances; the best results

were found to use two different approaches for solving VRP with the same well-known benchmark

problems.

The results obtained from the preliminary analysis of both approaches are presented in this table and the

second column of the table shows the name of the instances used for all the algorithms. Column 3 is related

to solutions obtained with the Clarke and Wright Saving algorithm (CWS) where the vehicle capacity is

considered during the design stage as 100%. The fourth column is related to solutions obtained by Iterated

Greedy algorithm (IG) approach. The gaps between these two approaches are presented in the last column.

The last column shows the % improvement between the Clarke and Wright Saving algorithm (CWS) and

Iterated Greedy (IG) algorithm. Comparative results between the approaches are shown in the last column

whilst the bold numbers represent the instances that improved. The improvement rate is defined as:

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒 =

ி௜௡௔௟ ௕௘௦௧ ௦௢௟௨௧௜௢௡ ି ௣௥௘௩௜௢௨௦ ௕௘௦௧ ௦௢௟௨௧௜௢௡

 ி௜௡௔௟ ௕௘௦௧ ௦௢௟௨௧௜௢௡
 ∗ 100. The bottom row in Table 2 shows

the average value of the results for each approach for all instances of the problem.

As shown in Tables 1 and 2, the most interesting column is the last column, which represents the

improvement between the approaches. The improvement column shows that in most instances the

improvement is generally small and does not reach 2% when these two approaches are compared – CWS

with IG. For example, for instances that produced better results, A-n32-k5, A-n37-k5, A-n60-k9, E-n30-k3,

E-n51-k5, E-n76-k7 and P-n76-k5 were found to be the best solutions and obtained results above 1%. From

the tables, in terms of the improvement column, in 37 out of 55 instances the improvement of the total cost

is less than 1% and in 6 out of 55 instances it is more than 1%. However, 12 out of 55 instances had no

improvement. Notice that the smallest improvement, that is zero, has been omitted from the calculation of

the average in the last row. In addition, the average value of the results between CWS and IG for all

instances of the problem is equal to 0.53%.

19

Name of instance CWS IG GAP (CWS – IG)

1 A-n32-k5 843.7 830.7 1.56%

2 A-n33-k5 712 711.8 0.02%

3 A-n33-k6 776.3 776 0.03%

4 A-n37-k5 707.8 695.4 1.78%

5 A-n38-k5 768.1 765.9 0.28%

6 A-n39-k6 863.1 856.9 0.72%

7 A-n45-k6 1006.5 1006.5 0.00%

8 A-n45-k7 1199.9 1198.1 0.15%

9 A-n55-k9 1099.8 1098.5 0.11%

10 A-n60-k9 1421.9 1407.2 1.04%

11 A-n61-k9 1102.2 1094.5 0.70%

12 A-n63-k9 1687.9 1683.7 0.24%

13 A-n65-k9 1239.4 1239 0.03%

14 A-n80-k10 1860.9 1854.9 0.32%

15 B-n31-k5 681.2 681.2 0.00%

16 B-n35-k5 978.3 970.7 0.78%

17 B-n39-k5 566.7 565.4 0.22%

18 B-n41-k6 898.1 897 0.12%

19 B-n45-k5 757.2 755.2 0.26%

20 B-n50-k7 748.8 748.2 0.08%

21 B-n52-k7 764.89 762.5 0.31%

22 B-n56-k7 733.7 730.8 0.39%

23 B-n57-k9 1653.4 1651.9 0.09%

24 B-n64-k9 921.6 919.6 0.21%

25 B-n67-k10 1099.9 1098.9 0.09%

26 B-n68-k9 1317.8 1317.7 0.01%

27 B-n78-k10 1264.6 1260.6 0.31%

Table 1. Comparison of methodologies for 55 selected VRP instances

20

Name of instance CWS IG GAP (CWS – IG)

28 E-n22-k4 388.8 388.8 0.00%

29 E-n30-k3 534.4 525.8 1.63%

30 E-n33-k4 843.1 842.8 0.35%

31 E-n51-k5 584.6 578.6 1.03%

32 E-n76-k7 737.7 724.2 0.86%

33 E-n76-k10 900.3 893.9 0.71%

34 E-n76-k14 1073.4 1072.9 0.04%

35 F-n45-k4 745 740 0.67%

36 F-n72-k4 257 255 0.78%

37 F-n135-k7 1207 1201 0.49%

38 M-n101-k10 833.5 825.3 0.99%

39 M-n121-k7 1068.1 1057.6 0.99%

40 P-n19-k2 237.9 236.5 0.59%

41 P-n20-k2 233.9 233.9 0.00%

42 P-n22-k2 239.5 239.5 0.00%

43 P-n22-k8 590.6 590.6 0.00%

44 P-n40-k5 518.4 518.4 0.00%

45 P-n50-k8 674.3 674.3 0.00%

46 P-n50-k10 734.3 734.3 0.00%

47 P-n51-k10 790.9 790.9 0.00%

48 P-n55-k7 2441.7 2441.7 0.00%

49 P-n55-k15 978.1 978.1 0.00%

50 P-n60-k10 800.2 796.2 0.50%

51 P-n65-k10 851.7 850.9 0.09%

52 P-n70-k10 896.9 894.8 0.23%

53 P-n76-k4 689.1 683.1 0.87%

54 P-n76-k5 698.5 690.4 1.17%

55 P-n101-k4 765.4 761.7 0.48%

 Average 890.72 887.27 0.53%

Table 2. Comparison of methodologies for 55 selected VRP instances

21

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

1150

1200

1250

1300

1350

1400

A-n32-k5

A-n37-k5

A-n60-k9

E-n30-k3

E-n51-k5

P-n76-k5

Co
st

s

Instances

Comparsion between CWS and IG

CWS

IG

22

This chart presented the best solution for several instances of the total costs. The detail along the left side of the

above graph shows the total costs. Whereas the bottom of the graph above, shows the different classes from the

instances. The chart showed the comparison between total costs obtained using the CWS algorithm and total

costs obtained using IG algorithm. In summary, it is apparent that there was a slight improvement in the

solutions to the instances, such as P-n76-k5. Also, a clear improvement can be seen in the results using the IG

algorithm; this approach out-performs the other approach in the improvement of solutions.

§1.6 Conclusion

For the purpose of this paper, we have compared CWS with IG algorithm and then analysed the trade-offs of

these solutions on instances. These two different approaches were proposed to evaluate the total cost of both

approaches and to obtain efficient routing solutions for problems under deterministic cases. The main objective

of this paper was to test these approaches to the well-known benchmark problem when customer demand is

deterministic. Computational results were undertaken in order to analyse the performance of the CWS and IG.

The computational results showed that IG performs well in comparison with the CWS of the total costs. In

addition, it was observed that for tested instances, the second approach satisfies all customer demand, leading to

improved solution costs. The improvement in the average deviation between these approaches was 0.53%.

However, these approaches are a significantly more challenging approach to solving the problem because of the

large problem size and the numbers of iterations required to obtain improved minimum costs.

§1.7 References

1. Chalghoumi, S., Ladhari, T. (2015). Iterated greedy local search and simulated annealing algorithms
for the two-machine flowshop scheduling problem . International Conference On automation, Control,
Engineering and Computer Science.

2. Fanjul-Peyro, L., Ruiz, R., (2010). Size-reduction heuristics for the unrelated parallel machines
scheduling problem.

3. Hajer, A., & Talel, L. (2013). Iterated local search and iterated greedy local search for two machines
permutation flowshop scheduling problem with time lag. IEEE.

4. Huerta-muñoz, D. L., Rios-Mercado, R, Z., Ruiz, R. (2012). An iterated greedy heuristic for a market
segmentation problem with multiple attributes. Report Number: PISIS-2012-02, Affiliation: Graduate
Program in Systems Engineering, UANL.

5. Mohan, R., Gopalan, N, P. (2014). Task assignment for heterogeneous computing problems using
improved iterated greedy algorithm. I.J. Computer Network and Information Security. 50-55.

6. Naderi, B., Rahmani, S., & Rahmani, S. (2014). A multiobjective iterated greedy algorithm for truck
scheduling in Cross-Dock problems. Hindawi Publishing Corporation, Journal of Industrial
Engineering. 12 pages.

7. Naderi, B., Zandieh, M., Mohammad, S., & Fatemi, T. (2009). An iterated greedy algorithm for
flexible flow lines with sequence dependent setup times to minimize total weighted Completion Time.
Journal of Industrial Engineering, 3, 33–37.

8. Naderi, B., Rahmani, S., & Rahmani, S. (2014). A multiobjective iterated greedy algorithm for truck
scheduling in Cross-Dock problems. Hindawi Publishing Corporation, Journal of Industrial
Engineering. 12 pages.

9. Naderi, B., Zandieh, M., Mohammad, S., & Fatemi, T. (2009). An iterated greedy algorithm for
flexible flow lines with sequence dependent setup times to minimize total weighted Completion Time.
Journal of Industrial Engineering, 3, 33–37.

23

10. Pranzo, M., & Pacciarelli, D. (2015). An iterated greedy metaheuristic for the blocking job shop
scheduling problem. Journal of Heuristics, 1-25.

11. Peyró, L. F., and Ruiz, R. (2010). Iterated greedy local search methods for unrelated parallel machine
scheduling. European Journal of Operational Research, 207(1), 55–69.

12. Ruiz, R., Stutzle, T. (2005). An iterated greedy algorithm for the flowshop problem with sequence
dependent setup times. The 6th Metaheuristics International Conference, 817–823.

13. Ruiz, R., Stutzle, T. (2007). A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. European Journal of Operational Research, 177, 2033–2049.

