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Abstract 

 
A digraph D is supereulerian if D has a spanning eulerian subdigraph. We prove that a 

strong digraph D of order n ≥ 4 satisfies the following conditions: for every triple x, y, z ∊ 
V(D) such that x and y are non-adjacent, if there is no arc from x to z, then d(x) + d(y) + 

d+(x) + d‾(z) ≥ 3n - 5. Then D is supereulerian. 
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1 Introduction 
 

Suppose that D is finite and simple digraphs (without loops or parallel arcs, but possibly with 
cycles of length two). Denote by V (D), A(D) its vertex set and arc set, respectively, when D is 
clear from context we simply write V and A. Undefined terms and notations will follow [5] and  
[7]. Throughout this paper, we use the notation (u, v) to denote an arc oriented from u to v in a 

digraph and the notation [u, v] to denote an edge between u and v. When (u, v) ∊ A(D), we say 

that u and v are adjacent. For integers n, m > 0; we use Kn,m to denote the complete bipartite 
graph.  

For digraphs H and D, by H ⊆ D we mean that H is a subdigraph of D. Following [5], for a 
digraph D with X, Y ⊆ V (D), define 

 
(X, Y )D = {(x; y) ∊ A(D) : x ∊ X, y ∊ Y}. 

 
When Y = V (D) - X, we define 

 
∂+

D(X) = (X, V (D) - X)D and ∂-
D(X) = (V (D) – X, X)D. 

 
For a vertex v ∊ V (D), d+

D(v) = |∂+D({v})| and d-D(v) = |∂-
D({v})| are the out-degree and the 

in-degree of v in D, respectively. dD(v) = d+
D(v) + d-D(v).  

A digraph D is complete if, for every pair x, y of distinct vertices of D both (x, y) and (y, x) 
are in D. A digraph D is called strong if there is a dipath from x to y and a dipath from y to 
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x for all x, y ∊ V (D).  Given an (x, y)-dipath P, we denote by P ]x, y[ the dipath P- {x, y}. 

Given a dipath P = v1, v2, … , vk we denote by P [vi, vj], where 1 ≤ i < j ≤ k the subdipath 

of P starts at vi and ends at vj.  For a subdigraph H of a digraph D, an (x, y)-dipath P is  
an (H, H)-dipath if x, y ∊ V (H) and V (P )∩V (H) = {x, y}. We say that an ordered pair of 

vertices (x, y) is dominated (dominating) if there exists z ∊ V (D), with (z, x), (z, y) ∊ A(D)  

((x, z), (y, z) ∊ A(D)). 
 

A walk in D is an alternating sequence W = x1a1x2a2…xk-1ak-1xk of vertices xi and arcs aj 

from D such that ai = xixi+1 for i = 1,…,k-1. A walk is closed if x1 = xk, and open otherwise. If 
all the arcs of a walk are distinct we call it a ditrail. If a ditrail starts at s and ends at t we call it 
(s, t)-ditrail.  

Let H be a subdigraph of a digraph D and X ⊆ A(D). Then we use H + X to denote the 
subdigraph D[A(H) ∪ X] induced by A(H) ∪ X. If H' is also a subdigraph of D, then we use 
H + H' for H + A(H'). 

Motivated by the Chinese Postman Problem, Boesch, Suffel, and Tindell [1] in 1977 proposed 
the supereulerian problem, which seeks to characterize graphs that have spanning Eulerian sub-
graphs, and they in [1] indicated that this problem would be very difficult. Pulleyblank [11] later in 
1979 proved that determining whether a graph is supereulerian, even within planar graphs, is NP-
complete. Since then, there have been lots of researches on this topic. 

 
It is natural to consider the supereulerian problem in digraphs. A digraph D is eulerian if D 

is connected and for any v ∊ V (D), d+
D(v) = d-D(v). A digraph D is supereulerian if D contains 

a spanning eulerian subdigraph. A digraph D is a closed ditrail if it is eulerian. The main 
problem is to determine supereulerian digraphs. 

 
Several efforts in supereulerian digraphs have been made. However, contrary to the case of 

undirected graphs, not much work has been done yet for supereulerian digraphs. The earlier 
studies were done by Gutin ([2, 3]). For what has been recently done see [6],[12],[9] and [10]. 

 
The property of being supereulerian is at the same time relaxation of being hamiltonian: being 

supereulerian digraph means having a closed ditrail covering all the vertices of the digraph; being 
hamiltonian means having a closed ditrail covering all vertices of the digraph without using a vertex 
twice. In this paper we analyze some sufficient conditions for a digraph to be supereulerian. 

 
The purpose of the following section is to show that, as it is the case for undirected graphs, 

some sufficient degree conditions for hamiltonicity in digraphs can be (slightly) weakened to 
become sharp sufficient conditions for supereulerianity. The next well known theorem in 
hamiltonian digraphs is due to Meyniel. 

 
Theorem 1.1 (Meyniel [4]) A strong digraph D on n vertices satisfying d(x) + d(y) ≥ 2n - 1 for 
all pairs of non-adjacent vertices x, y is hamiltonian. 

 
Bang-Jensen and Maddaloni in [6] proved the following theorem which is a similar result to 

Meyniel's theorem for supereulerian digraphs. 
 

Theorem 1.2 (J. Bang-Jensen and A. Maddaloni [6]) Let D be a strong simple digraph on n 
vertices. If d(x) + d(y) ≥ 2n - 3 for any pair of non-adjacent vertices x and y, then D is 
supereulerian. 
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The next theorem is due to Y. Manoussakis. 

 
Theorem 1.3 (Y. Manoussakis [13]) Suppose that a strong digraph D of order n ≥ 2 satisfies 
the following condition: for every triple x, y, z ∊ V (D) such that x and y are non-adjacent, if 
there is no arc from x to z, then 

 

d(x) + d(y) + d+(x) + d-(z) ≥ 3n – 2. 
 

Then D is hamiltonian. 

 
We will study the case in which the condition in theorem 1.3 is sufficient for a digraph to be 

supereulerian. 
 

We will use the following lemma later as a necessary condition for a digraph to be 
supereulerian. 

 
Lemma 1.1 (K.A. Alsatami et al, Lemma 2 of [8]) A digraph D is nonsupereulerian if there exist 

vertex-disjoint subdigraphs {A, B1, …, Bm} of D, for some integer m > 0, satisfying each of the 
following. 

(i) N-(Bi) ⊆ V (A), ∀i ∊ {1, 2, …, m}. 
(ii) |∂-(A)| ≤ m - 1. 

 
 

2 Main Theorem 
 

Defintion 2.1 Let D be a strong digraph and G be a maximal eulerian subdigraph with respect 
to vertices where |V(G)|<|V(D)|. If P is a dipath in G and G-P is not connected then, we say 
that D is semi-max-digraph. 
 
Theorem 2.1 Suppose that a strong digraph D of order n ≥ 4 satisfies the following condition: 
for every triple x, y, z ∊ V (D) such that x and y are non-adjacent. If there is no arc from x to z, 
then 

d(x) + d(y) + d+(x) + d-(z) ≥ 3n – 5. 
 

Then D is supereulerian or semi-max-digraph. 
 

Proof Since D is strong, D must have an eulerian subdigraph. Let {Si}i≥1 where i ∊ N, be the 
set of eulerian subdigraphs of D such that among all eulerian subdigraphs of D 

 

Therefor let |V (Si)| be maximized. (1) 

Let S be an eulerian subdigraph of {Si} such that among all eulerian subdigraphs of {Si} 
 

Therefor let |A(S)| be maximized. (2)
 

If |V (S)| = |V (D)|, then S is a spanning eulerian subdigraph of D and we are done. Assume by 
contradiction that |V (D)| > |V (S)| > 1. Hence V (D) - V (S) ≠φ . Since D is strong, there 
exists an (S, S)-dipath Q on at least three vertices. Let Q be chosen so that: 

 
the length of a shortest dipath P in S between the endpoints of Q is minimized. (3)
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Assume that V (Q) ∩ V (S) = {z, r}, where z; r are the first and the last vertex of Q. Assume 
that x is the first vertex of Q]z, r[, namely, (z, x) ∊ A(Q). If P = (z, r), then S - (z, r) + Q is an 
eulerian subdigraph with at least one more vertex than S, contrary to (1), moreover, by the 

maximality of S, z cannot equal r. Therefore, |V (P )| ≥ 3 and |V (Q)| ≥ 3. Assume that y1 and 

yd are the first and the last vertex of P ]z, r[, namely, {(z, y1), (yd, r)} ⊆ A(P ). Note that y1 may 

equal yd. There exists a vertex yc ∊ V (P ]z; r[) where 1 ≤ c ≤ d such that  

|∂+S(yc) ∩ A(S)| = 1 and |∂-S (yc) ∩ A(S)| = 1, (4)
 

otherwise S - A(P ) + Q is a greater closed ditrail, contradiction with maximality of V (S). 
 

(A) |V (P)| ≥ 4 (when the number of vertices of P is greater than or equal 4):  

Let M = {y1, y2, …, yd} be the vertices of P ]z, r[ where |M| = d. Let |V (S)| = s. 
Then dM (x) = 0, (by minimality of P ). 
And dV (S) - M (x) ≤ s - d,  
this because any arc increase on this number leads to the existence of a vertex xs ∊ V (S) - M 
such that {(x, xs), (xs, x)} ⊆ A(D) and we get a greater closed ditrail which is a contradiction 
with maximality of V (S). 

 

(Here we consider that all arcs from x to V (S) - (M ∪ {z}) are out arcs to maximize d+(x)). 
(5)  

So, 

dV (S)(x) = dM (x) + dV (S) - M (x) ≤ s - d: 
 

d+
V(S)(x) takes its maximum value when all arcs between x and V (S) are from x to V (S) - M 

except the arc (z, x), so by (5) d+
V(S)(x) ≤ s – d - 1. 

We have dM (yc) ≤ d + 1:  
the reasons are the following: 

(i) If yi ∊ M and yi is not a neighbor of yc in P then 
 

|{(yc, yi), (yi, yc)} ∩ A(D)| ≤ 1, (6)

otherwise {(yc, yi), (yi, yc)} ⊆ A(D) - A(S) (we used 4) and S + {(yc, yi), (yi, yc)} is a greater 
closed ditrail with respect to arcs which is a contradiction with maximality of A(S).  
By the previous inequality labeled with number (6) and for our purpose we choose 

 

{(yc+1+j, yc), (yc, yc - 1 - k)} ⊆ A(D), (7)
 

and 

{(yc, yc+1+j), (yc - 1 – k, yc)} ∩ A(D) = φ  ∀ 1 ≤ j ≤ d – c - 1 and 1 ≤ k ≤ c - 2. 
 
     (ii) We have 

 |(yc – 1, yc), (yc, yc - 1), (yc, yc+1), (yc+1, yc) ∩A(D)|≤4. 
By (i) and (ii) we have dM (yc) ≤ d + 1. 
 
We have dV(S)-M(yc) ≤ s – d - 1: 
 
the reasons are the following:  
(i) By using the equalities labeled with number (4) then 
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|(yc, f), (f, yc)| ≤ 1 ∀ f ∊ V (S) - V (P ), (8) 

otherwise A(S) ∪ {(yc, f), (f, yc)} is a greater closed ditrail with respect to arcs (contradiction 
with maximality of A(S)).  
(ii) case.(1) d ≥ 3 and 2 ≤ c ≤ d - 1, 

 

{(r, yc), (yc, r), (yc, z), (z, yc)} ∩ A(D) = φ (9) 
If (r, yc) ∊ A(D) then by the containment labeled with number (7) we have S - (z, y1)+Q+(r, yc)+ 

(yc, y1) as a greater closed ditrail (contradiction with maximality of V (S)). If (yc, r) ∊ A(D) then 

by the containment number (7) we have S - (yd, r) + (yd, yc) + (yc, r) as a greater closed ditrail 

with respect to arcs (contradiction with maximality of A(S)). If (yc, z) ∊ A(D) then by the 

containment number (7) we have S - (yd, r) + (yd, yc) + (yc, z) + Q as a greater closed ditrail 

(contradiction with maximality of V (S)). If (z, yc) ∊ A(D) then by the containment number (7) 

we have S - (z, y1) + (z, yc) + (yc, y1) as a greater ditrail with respect to arcs (contradiction 
with maximality of A(S)).  

Hence by the intersection number (9) and the inquality number (8) dV (S) - M (yc) ≤s – d - 2. 
case.(2) d ≥ 2 and c = 1, 

 

{(r, yc), (yc, r), (yc, z), (z, yc)} ∩ A(D) = {(z, yc)} (10) 

(1) S - (z, yc) + Q + (r, yc) violates (1) ⇒ (r, yc) ∉ A(D).  
(2) (a) d > 2,  
|{(yd, yc), (yd -1, yc), (yc, r), (yc, z)}| ≤ 2, otherwise contradicts maximality of V (S) or maximality 

of A(S). By the containment number (7) we have {(yd, yc), (yd -1, yc)} ⊆ A(D), so when d > 2 

we have {(yc, r), (yc, z)} ∩ A(D) = φ 
(b) d = 2,  
|{(yc, r), (yc, z), (yd, yc)}| ≤ 1, otherwise contradicts maximality of V (S) or maximality of A(S). 

By the containment number (7) we have (yd, yc) ∊ A(D), so when d = 2 we have {(yc, r), (yc, z)} 
∩ A(D) = φ. 
        Hence by the inequality number (8) and the intersection number (10)  
dV (S) – M(yc) ≤s – d – 1.   
 
 case.(3) d ≥ 2 and c = d, 

 

{(r, yc), (yc, r), (yc, z), (z, yc)} ∩ A(D) = {(yc, r)} 
 

(1) S - (yc, r) + (yc, z) + Q violates maximality of V (S) ⇒ (yc, z) ∉ A(D).  
(2) (a) d > 2, 

  
 

 

 

(11) 

 

|{(yc, y1), (yc, y2), (r, yc), (z, yc)}| ≤ 2, otherwise contradicts maximality of V (S) or maximality 

of A(S). By the containment number (7) we have {(yc, y1), (yc, y2)} ⊆ A(D), so when d > 2 we 

have {(r, yc), (z, yc)} ∩ A(D) =φ. 
(b) d = 2,  

(r, yc) ∉ A(D), otherwise S – {(z, y1), (y1, yc)} + Q + (r, yc) violates maximality of A(S). 

|{(z, yc), (yc, y1)}| ≤ 1, otherwise contradicts maximality of A(S). By the containment number 

(7) we have (yc, y1) ∊ A(D), so when d = 2 we have {(r, yc), (z, yc)} ∩ A(D) =φ. 

Hence by the inequality number (8) and the intersection number (11) dV (S) - M(yc) ≤ s – d – 1. 
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       In the following we will discuss the value of d-V(S)(z): 

(i) |(V (S), z)D ∩ A(S)| = 1, otherwise |(z, V (S))D ∩ A(S)| ≥ 2 and there exists a vertex а ∊ 

V(S) - M such that (z, а) ∊ A(S) ((z, M – {y1}) ∩ A(S) =φ by manimality of P ) which leads to 
that S - (z, а) + (z, x) + (x, а) is a greater closed ditrail, contradiction with maximality of V (S). 
Moreover, (V (S) – M, z) ∩ (A(D) - A(S)) =φ, otherwise there exists a vertex е ∊ V (S) - M 
such that (е, z) ∊ A(D) - A(S) which implies that S + {(е, z), (z, x), (x, е)} is a greater closed 
ditrail, contradiction with maximality of V (S).  
(ii) {(yd, z), (yd-1, z), (yc, z)} ∩ (A(D) - A(S)) =φ, otherwise S - (yd, r) + (yd, z) + Q is a 

greater closed ditrail (violates maximality of V (S)), S – {(yd-1, yd), (yd, r)} + (yd-1, z) + Q is a 
greater closed ditrail (violates maximality of A(S)). By the containment number (7) we have S - 
(yd, r) + {(yd, yc), (yc, z)} + Q as a greater closed ditrail (violates maximality of V (S)).  
(iii) For any vertex yi ∊ M where i ≤ c - 1 we have (yi, z) ∉ A(D) - A(S), otherwise we have (by 
using the containment number (7)) S - (yd, r) + {(yd, yc), (yc, yi), (yi, z)} + Q is a greater closed 
ditrail (violates maximality of V (S)). So consider yc is the first vertex in P ]z, r[ to reach the 
maximum number of arcs from M to z.  
case.(1) d > 2,  
(1) 1 ≤ c ≤ d - 2, 

(i),(ii) and (iii) ⇒ d-M (z) + d-V (S) - M (z) ≤ d – 3 - (c - 1) + 1 = d – c - 1. 
 
(2) d – 1 ≤ c ≤ d, 
(i),(ii) and (iii) ⇒ d-M (z) + d-V(S) – M (z) ≤ 0 + 1 = 1. 
 

       case.(2) d = 2, 
       (i),(ii) and (iii) ⇒ d-M (z) + d-V(S) – M (z) ≤ 0 + 1 = 1. 
 
       Thus we have  

(a) d = 2 : 

dV(S)(yc) +  d-V(S)(z) = dV(S) – M (yc) + dM (yc) + d-M (z) + d-V(S) - M (z) ≤ s + 1. 
 
(b) d ≥ 3 and c = 1 : 

dV(S)(yc) +  d-V(S)(z) = dV(S) – M (yc) + dM (yc) + d-M (z) + d-V(S) - M (z) ≤ s + 1.        
      (c) d ≥ 3 and c = d : 

dV(S)(yc) +  d-V(S)(z) = dV(S) – M (yc) + dM (yc) + d-M (z) + d-V(S) - M (z) ≤ s + 1. 
 

(d) d ≥ 3 and 2 ≤ c ≤ d - 2 : 

dV(S)(yc) +  d-V(S)(z) = dV(S) – M (yc) + dM (yc) + d-M (z) + d-V(S) - M (z) ≤ s. 
 

(e) d ≥ 3 and c = d - 1 : 

      dV(S)(yc) +  d-V(S)(z) = dV(S) – M (yc) + dM (yc) + d-M (z) + d-V(S) - M (z) ≤ s. 
      By choosing the lowest bound s we conclude that: 

dV(S)(x) + d+
V(S)(x) + dV(S)(yc) + d-V(S)(z) ≤ s - d + s - d - 1 + s = 3s - 2d - 1. 

      Let H = V(D) – V(S), here: 

dH (x) ≤ 2(n – s - 1) and d+
H (x) ≤ n – s - 1.  

{(yc, h), (h, yc)} ∩ A(D) =φ ∀ h ∊ H, otherwise: 

If h ∊ V (Q), then it contradicts with manimality of P . If h ∉ V (Q), then ychx + Q - (z, x) 

contradicts with manimality of P and zxhyc contradicts with manimality of P .  
Hence dH (yc) = 0.  
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Moreover d-H (z) = 0 because zxhz + S is a greater closed ditrail (violates maximality of V (S)). 
Thus we have 

 

dH (x) + dH (yc) + d+
H (x) + d-H (z) ≤ 2(n – s - 1) + 0 + n – s - 1 + 0. 

 
Finally, 

 

d(x) + d(yc) + d+(x) + d- (z) ≤ 3s - 2d - 1 + 3n - 3s - 3 = 3n - 2d – 4. 
 

Since d ≥ 2, then the right hand side takes its maximum value when d = 2. So the digraph is 
supereulerian when: 

 

d(x) + d(yc) + d+(x) + d- (z) ≥ 3n – 1 - 6 = 3n - 7 
 

(B) |V (P )| = 3; namely M = {yc}: 
(i) dV (S)(x) ≤ s - 1 [by the same way in (A)] 

dV (S)(yc) ≤ s - 1 [by the same way in (A)] 

d+
V(S)(x) ≤ s - 2 [by the same way in (A)] 

d-V(S)(z) = 1, [if there exists a vertex u ∊ V (S) such that (u, z) ∊ A(D) - A(S), then {(u, z), (z, x),  
(x, u)} + S is a greater closed ditrail. If there exist two vertices u, v ∊ V (S) such that {(u, z), (v, z)} 

 ⊆A(S), then there exists a vertex l ∊ V (S) - {yc} such that (z, l) ∊ A(S) and S - (z, l) + {(z, x), (x, l)}  
is a greater closed ditrail.] 

(ii) dH (x) ≤ n – s - 1. [Here we do not duplicate n – s - 1 = |H| - 1 = |V (D) - (V(S) ∪ {x})| 
because |M| = 1, so we just count the arcs leaving x, otherwise, for a vertex h ∊ H then zxhxr + 

S - zycr contradicts maximality of V (S)]. 

dH (yc) ≤ n - s - 1. [We just count the arcs leaving yc, otherwise contradicts maximality of V (S)  
and manimality of P ]. 
d+H (x) ≤ n – s - 1. 

d-H (z) = 0. [Otherwise contradicts maximality of V (S)
            By using (i) and (ii) we have the following: 

d(x) + d(yc) + d+(x) + d- (z) ≤ 3s - 4 + 1 + 3(n – s - 1) ≤ 3s - 3 + 3n - 3s – 3 ≤ 3n - 6 
So the digraph is supereulerian when: 

 

d(x) + d(yc) + d+(x) + d- (z) ≥ 3n - 5 
 

From (A) and (B) and by placing y = yc we choose the larger bound, hence: 
 

d(x) + d(y) + d+(x) + d- (z) ≥ 3n - 5 
 

for which D is supereulerian digraph.  
 
 
 
 
 

 

4 Conclusion 
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A strong digraph D of order n ≥ 4 satisfies the following conditions: for every triple x,y,z ∊V (D) 

such that x and y are non-adjacent, if there is no arc from x to z, then d(x)+d(y)+d+(x)+d-(z) ≥ 
3n - 5. Then D is supereulerian. 
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