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Abstract: Inertial effects arising from the electron mass are investigated. A longitudinal force is 
generated when a large current is passed in a wire. Because of this force, an additional 
magnetic field due to the electron mass is generated along the wire axis. When a huge current 
is applied to the wire, the wire explodes giving off its magnetic energy as heat and light. 
Massive electrodynamics is studied which allows the presence of magnetic charges 
(monopoles). The exploding force on a wire could also result from disintegrating the magnetic 
monopoles.  
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1  Introduction 

Newton's second law states that an object has intrinsic resistance to a change in its 

motion. The tendency to which the object resists this change is termed inertia. It is found to be 

equal to the mass the object has. The resistance of an object to increase or decrease its velocity 

is the same. However, this inertia is reflected in many ways in any change in body 

characteristics. If an object is charged there is an additional resistance (inertia) due to its charge 

as well. The passage of a charge gives rise to an electric current. Self-inductance is the degree of 

the resistance of the coil (inductor) for increasing or decreasing the current passing on it. Since 

electrons have mass and charge, they experience two inertias. For instance, the inductor (coil) 

has an additional inertial self-inductance besides its magnetic one. Hence, one anticipates that 
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these two effects are interrelated and manifested in other aspects. 

In Mach idealogy, inertia is not an intrinsic property of the object but is a manifestation 

of how the object is influenced by the external world. Accordingly, an object in an otherwise 

empty universe has vanishing inertia (mass)[1]. This is so since there is no force acting on a 

single object, and owing to Newton's second law that 𝐹 = 𝑚𝑎 = 0, which is meaningful when 

𝑚 = 0. This is so since a body moving with constant velocity needs a reference frame, that does 

not exist, making this assumption absurd. Hence, inertia is affected by the amount of matter 

appearing outside the object. 

To obtain the complete physical quantities connected with the object's charge and mass 

inertias, we resort to the analogy connecting electromagnetism with mechanics. Inertial effects 

are not considered in the framework of Maxwell's electrodynamics, as they are connected with 

quantum mechanics. We aim here to explore their origin and consequences. 

The inertial motion of the electron is found to give rise to an inertial magnetic field that 

acts along the wire length. This magnetic field is shown to give rise to a longitudinal (tension) 

force along the wire. It is pertinent to mention that there is a component of the magnetic field 

(TE waves) inside a waveguide. It is found that this motion is equivalent to that of a massive 

photon. The massive electrodynamics was considered by Proca and de Broglie[2, 3]. To derive 

new massive electrodynamics we employ quaternions. This massive electrodynamics is 

associated with breaking gauge invariance. We will show here that massive electrodynamics 

can be tackled if the Lorenz gauge condition is relaxed. 

 

2  Inertial effects in electromagnetism  

Let us now consider the motion of electrons inside a conductor. The current passing 

through this conductor is given by  

 𝐼 = 𝑛𝑒𝑣𝐴 , (1) 

 where 𝐴, 𝑣, 𝑒 and 𝑛 are the cross-sectional area of the conductor, electron velocity, 

electron charge and the number density of the electrons2. The kinetic energy of the total mass 

                                                      
2 The number density, 𝑛 =

ேಲ

ெ
 𝜌௠, where 𝜌

𝑚
 is the mass density of the material, 𝑀 is its atomic weight, and 𝑁𝐴 is the Avogadro's 

number. 
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of electrons inside the conductor is given by  

 𝐸௄ =
ଵ

ଶ
 𝑀𝑣ଶ , (2) 

 where 𝑀 is the total mass of the electrons inside the conductor. It is given by  

 𝑀 = 𝑚𝑛𝐴ℓ , (3) 

 where 𝑚 is the mass of a single electron. Substituting eqs.(1) and (3) in eq.(2) yields  

 𝐸௄ =
ଵ

ଶ
 ቀ

௠ℓ

௡௘మ஺
ቁ 𝐼ଶ , (4) 

 which can be compared with the magnetic energy contained inside an inductor (coil) arising 

from the motion of electron's charge, viz.,  

 𝐸௄ =
ଵ

ଶ
 𝐿 𝐼ଶ . (5) 

 Comparing eqs.(4) and (5) reveals that the passage of the electron's mass induces a 

self-inductance too, given by  

 𝐿௞ =
௠ℓ

௡௘మ஺
 , (6) 

 which can be called inertial self-inductance. This quantity is however called the kinetic 

self-inductance too[4, 5]. Thus, the conductor appeared as if it were an inductor of length ℓ 

and cross-sectional area 𝐴. The inertial self-inductance in some cases can outnumber (exceed) 

the magnetic inductance. This occurs when 𝐴 becomes exceedingly small. It is the case for 

nano-wires. 

Interestingly, to connect the inertial self-inductance to the plasma frequency of the 

electron, 𝜔௣, inside the conductor as  

𝐿௞ =
ଵ

ఠ೛
మ஼

 ,                𝜔௣ = ට
௡௘మ

ఌబ௠
 ,                𝐶 =

ఌబ஺

ℓ
 , (7) 

 where the conductor acted as if it were a parallel - plate capacitor. Interestingly, the plasma 

frequency is the resonance frequency of the equivalent 𝐿௞ − 𝐶 circuit associated with the 

conductor. The impedance of the conductor is defined by 𝑍௞ = ට
௅ೖ

஼
. Upon using eqs.(6) and (7) 

it transforms to  

 𝑍௞ =
ℓ

ఢబ஺ ఠ೛
 ,                        𝑍௞ =

ଵ

ఠ೛ ஼
 . (8) 

 Notice that in transmission lines the electromagnetic energy travels down the lines (wires) in a 
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damped fashion. It seems that at the high magnetic field (current) the energy can no longer be 

contained inside the wire, and the wire explodes giving off its energy content. You know that 

transmission lines carry electromagnetic energy of low frequency only. When the frequency 

becomes very high, the wire acts as an antenna and radiates its energy away in electromagnetic 

waves in space. 

Recall that the magnetic self-inductance of an inductor (coil) of length ℓ  and 

cross-sectional area 𝐴 and having 𝑁௧ number of turns, is given by  

 𝐿஻ = 𝜇଴𝑁௧
ଶ ஺

ℓ
 . (9) 

 This shows that for nano-scales the self-inductance 𝐿஻ becomes exceedingly small, but 𝐿௞ 

becomes significant. 

Let us now consider the Newton's second law of motion accounting for the motion of 

the electron's total mass that is given by  

 𝐹 =
ௗ௣

ௗ௧
=

ௗ

ௗ௧
𝑀𝑣 , (10) 

 which when one uses eqs.(1) and (3) yields  

 𝐹 =
ௗ

ௗ௧
ቀ

௠ℓ ூ

௘
ቁ . (11) 

 This implies that the momentum the electron's mass carry is  

 𝑝௘ =
௠ℓ

௘
 𝐼 . (12) 

 We better call 𝑝௘ the electron's electric momentum. Recall that when an electron interacts 

with an electromagnetic field, its momentum is changed to become 𝑝 ′ = 𝑝 − 𝑞𝐴௘. One could 

reason our case by assuming that the charge's effect on the particle inertial motion is such that 

−𝑞𝐴௘ = 𝑝௘. This states that the effect of the charge on the mass, as the particle moves, is as if 

being interacting with an electromagnetic field whose magnetic potential is 𝐴௘ = −
௠ℓ

௘మ
 𝐼, or 

𝐴௘ = −
௠ℓ ஺

௘మ
 𝐽 or 𝐽 = −

௡௘మ

ே௠
 𝐴, where 𝑛 = 𝑁/(ℓ𝐴), and 𝐽 = 𝐼/𝐴 is the current density, 

and 𝑁 is the total number of electrons. We call this potential the inertial magnetic potential. 

It is pertinent to mention that London's current of superconductivity is given by 𝐽 =

−
௡௘మ

௠
 𝐴[6] which is satisfied by the inertial magnetic potential above for 𝑁 = 1. Thus, one 

may claim the supercurrent of London results from the electron's inertial (mass) motion, and 



 
 

72 
 

not due to the charge motion as assumed. Intriguingly, mass and charge complement each 

other. 

Recall that the magnetic flux, 𝜙஻, is related to the magnetic self-inductance, 𝐿, by the relation  

 𝜙஻ = 𝐿𝐼 , (13) 

 so that the inertial magnetic flux, due to electrons' mass motion, will be  

 Φ௞ = 𝐿௞𝐼 =
௠ℓ௩

௘
 , (14) 

 upon using eqs.(1) and (6). This is an interesting result showing that the flux arising from the 

electron's mass depends on the electron's mass besides its charge. Equation (14) defines the 

magnetic flux due to a single moving electron. We know that the electron's spin has a quantum 

origin, and that quantum mechanics deals with the mass aspect of the particle (de Broglie 

wave). Notice that the quantity 𝐿 = 𝑚ℓ 𝑣 has a unit of angular momentum. Can we associate 

this magnetic flux to the electron's spin? 

The inertial magnetic field associated with the above flux can be obtained from the 

relation, 𝜙௞ = 𝐵௞𝐴. This yields,  

𝐵௞ =
௠

௘

ℓ

஺
 𝑣 ,            𝐵௞ =

ℓఛ

ఙ
 

௃

஺
 ,        𝐵௞ =

ா

௩బ
 ,        𝑣଴ =

ℓఛ

஺
 ,        𝐵௞ =

ఛ

஺
 𝑉 ,        𝐵௞ = 𝐿௞𝐽 , (15) 

 using eq.(10), which is the magnetic field due to a single electron acting along the wire. 

Equation (15) expresses the Ohm's magnetic law,  

 𝐽 = 𝜎௠𝐵௞ ,                𝜎௠ =
ଵ

௅ೖ
 , (16) 

 where 𝜎௠ is the magnetic conductivity. Recall that the electric conductivity is the inverse of 

the electric resistivity, and eq.(16) has a similar behavior where the magnetic resistivity is but 

the kinetic inductance. 

The above magnetic field acts along the wire axis (velocity). This is pertinent to the 

magnetic field in the waveguide (TM waves) where the magnetic field component along the 

wave direction is allowed to be present. From symmetric Maxwell's equations a longitudinal 

magnetic field results from a magnetic current (moving magnetic charge)[7]. The magnetic field 

under normal conditions is exceedingly small but grows larger for microscopic scales and 

high-velocity currents. Therefore, the magnetic monopole (magnetic charge) is a macroscopic 
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phenomenon and does not appear under normal conditions. This reveals a longitudinal 

magnetic field is a high-energy phenomenon. 

The magnetic force on the moving electrons can be deduced from 𝐹 = 𝑞𝑣𝐵௞ which 

upon using eq.(15), yields  

 𝐹ℓ = ቀ
௠ℓ

஺
ቁ 𝑣ଶ . (17) 

 Interestingly, this self-force is a pure inertial force independent of the electron's charge. Thus, 

electron's acceleration is given by 𝑎 =
ℓ

஺
 𝑣ଶ . It is a nonlinear resistive (drag) force. Because 

of this force, the wire experiences a tensile force along its length. It, therefore, appears that as 

if the electron is moving in a medium (viscous fluid). Thus, the motion of the electrons inside 

the conductor is analogous to the motion of a fluid in the pipeline. This force acts along the 

wire axis. It depends on the geometry of the conductor in which electrons move. The above 

tensile force on a smaller diameter wire is bigger than the thicker one. Notice eq.(17) is 

analogous to a force acting on a particle undergoing curved motion with a radius of curvature 

given by 𝑟௖ = 𝐴ℓିଵ . Does that mean the wire will bend by this amount? 

Applying eq.(1) in eq.(17), upon using eq.(6), yields  

 

 𝐹ℓ = ቀ
௠ℓ

௡మ௘మ஺య
ቁ 𝐼ଶ =

ଵ

ଶ
 𝜇௞ 𝐼ଶ ,                𝐹ℓ =

ℓ௘మఛమ

௠஺
 𝐸ଶ ,                 𝜇௞ =

ଶ

௡஺మ
 𝐿௞ , (18) 

  

where 𝜇௞ is the effective permeability of the medium (conductor), 𝜏 is the relaxation time of 

electrons, and 𝐸 is the applied electric field. This force is obtained in the framework of the 

motion of massive photons which act like magnetic monopoles[8]. A longitudinal tensile force is 

found to have the same form, viz., 𝐹 =
ଵ

ଶ
 𝜇଴𝐼ଶ. Whereas 𝜇଴ is fixed, 𝜇௞ depends on the 

wire geometry. This force which is inversely proportional to the wire cross-sectional area tends 

to shatter the wire into pieces, which is not due to heat generated in the wire (it is sometimes 

referred to as Ampere's longitudinal force [9] and references therein). Notice that while the 

force in mechanics is directly proportional to the particle mass, the force in eq.(18) is inversely 

proportional to the electron mass. 
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Upon employing eq.(1) in the expression for 𝐵௞ in eq.(15), the total magnetic fields becomes  

 𝐵௞ = ቀ
௠ℓ

௡௘మ஺మ
ቁ 𝐼. (19) 

 Intriguingly, the above magnetic field depends on the electron's mass that qualifies it to be 

called an inertial magnetic field. The magnetic flux associated with this magnetic field will be  

 Φ௞ =
௅

௘
 , (20) 

 if the angular momentum of the electron is quantized, i.e., 𝐿 = 𝑠 ℎ, where 𝑠 = 1,2,3, ⋯ is 

an integer, then the inertial magnetic flux will be  

 Φ௞ =
௦ ௛

௘
 . (21) 

 Therefore, eq.(20) yields  

 𝑒 Φ௞ = 𝑠 ℎ . (22) 

 This is reminiscent of the Dirac's quantization rule for a monopole, viz., 𝑞௠𝑞௘ = 𝑠ℎ, where 𝑞௘ 

and 𝑞௠ are the electric and magnetic charges of the monopole [10]. Recall that the inertial 

motion of the electron is akin to quantum mechanics where the particle possesses a wave 

aspect. The charge motion gives rise to an electromagnetic wave. Equation (21) suggests that 

Φ௞ has a flux quantum of ℎ/𝑒 which is also found to be the case in electric (magnetic) 

systems. 

 

3  Massive electrodynamics  

The Maxwell electrodynamics in vacuum is associated with a Lagrangian of the form  

 𝐿 =
ଵ

ଶ
𝜀଴𝐸ଶ −

஻మ

ଶఓబ
 . (23) 

 and the massive electrodynamics is defined by  

 𝐿 = −
ଵ

ସ
𝐹ఓఔ𝐹ఓఔ +

ଵ

఍
(𝜕ఓ𝐴ఓ)ଶ +

ଵ

ଶ
 𝑚ଶ𝐴ఓ𝐴ఓ , (24) 

 where 𝜁 is some parameter[11]. The second term in the above Lagrangian is added to help 

obtain a full canonical quantization [12]. However, we will show here that this term arises from 

considering massive electrodynamics without adding a term 𝑚ଶ𝐴ఓ𝐴ఓ that breaks the gauge 

symmetry. To this end, we treat the gauge field, 𝐴ఓ, as the wavefunction of the photon and 

employ the momentum eigen-value equation of the photon. We employ quaternions to come 

to this electrodynamics. Quaternions are generalization of complex numbers. The quaternionic 
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Dirac momentum-eigen value equation, with 𝛽 and 𝛾⃗ as the Dirac matrices, is given by [8]  

 𝛾෤𝑃෨∗𝐴ሚ = 𝑚𝑐𝐴ሚ ,        𝑃෨∗ = (
௜

௖
 𝐸 , −𝑝),        𝐴ሚ =

(
௜

௖
𝜑 , 𝐴) ,        𝛾෤ = (𝑖𝛽 , 𝛾⃗) , (25) 

 where 𝑚 is the photon's mass, 𝐸 and 𝑝 are the energy and momentum of the photon. A 

quaternion 𝐴ሚ is represented by 𝐴ሚ = (𝑎଴ , 𝑎⃗), where 𝑎଴ is called the scalar part and 𝑎⃗ is 

called the vector part. The product of two quaternions, 𝐴ሚ and 𝐵෨ , is given by  

 𝐴ሚ𝐵෨ = (𝑎଴𝑏଴ − 𝑎⃗ ⋅ 𝑏ሬ⃗  , 𝑎଴𝑏ሬ⃗ + 𝑎⃗𝑏଴ + 𝑎⃗ × 𝑏ሬ⃗ ) . (26) 

 Applying the above quaternion product rule in eq.(25) yields the scalar part as  

 𝑖𝛽(𝑝 ⋅ 𝐴 −
ா

௖మ
 𝜑) − 𝛾⃗ ⋅ (

௜

௖
(𝐸𝐴 − 𝑝 𝜑) − 𝑝 × 𝐴) = 𝑖𝑚𝜑 , (27) 

 and the vector part as  

 − ఉ

௖
(𝐸𝐴 − 𝑝 𝜑) − 𝑖𝛽𝑝 × 𝐴 + 𝛾⃗ (𝑝 ⋅ 𝐴 −

ா

௖మ
 𝜑) +

௜

௖
 𝛾⃗ × (𝐸𝐴 − 𝑝 𝜑) − 𝛾⃗ × (𝑝 ×

𝐴) = 𝑚𝑐𝐴 . (28) 

 However, in quantum mechanics, 𝑝 = −𝑖ℏ∇ሬሬ⃗  and 𝐸 = 𝑖ℏ
డ

డ௧
 , so that eq.(27) yields  

 𝑣⃗ ⋅ 𝐵ሬ⃗ = −
௠௖ఉ

ℏ
𝜑 ,        𝑣⃗ ⋅ 𝐸ሬ⃗ = 𝑐ଶ ቀ∇ሬሬ⃗ ⋅ 𝐴 +

ଵ

௖మ

డఝ

డ௧
ቁ, (29) 

 and eq.(28) yields  

 𝐵ሬ⃗ =
௩ሬ⃗

௖మ
× 𝐸ሬ⃗ −

௠௖ఉ

ℏ
𝐴 ,        𝐸ሬ⃗ = −𝑣⃗ × 𝐵ሬ⃗ + 𝑣⃗ ቀ∇ሬሬ⃗ ⋅ 𝐴 +

ଵ

௖మ

డఝ

డ௧
ቁ, (30) 

 where  

 𝐸ሬ⃗ = −∇ሬሬ⃗ 𝜑 −
డ஺⃗

డ௧
 ,        𝐵ሬ⃗ = ∇ሬሬ⃗ × 𝐴 ,        𝑣⃗ = 𝛽𝑐𝛾⃗ . (31) 

 Interestingly, when 𝑚 = 0, we restore the ordinary electromagnetic field in a frame moving 

with velocity 𝑣⃗ . We see that taking the dot product of eq.(30) by 𝑣⃗ and compare the 

resulting equations with eq.(29) yields 𝑣 = 𝑐  and 𝑣⃗ ⋅ 𝐴 = 𝜑 . 

Equations (30) can be expressed as  

 𝐵ሬ⃗ ′ = 𝐵ሬ⃗ −
௠௖ఉ

ℏ
𝐴 ,                𝐸ሬ⃗ ′ = 𝐸ሬ⃗ + 𝑣⃗ ቀ∇ሬሬ⃗ ⋅ 𝐴 +

ଵ

௖మ

డఝ

డ௧
ቁ. (30a) 

 The electric field in eq.(30) can be expressed as  

 𝐸ሬ⃗ ′ = 𝐸ሬ⃗ + ቀ
௩ሬ⃗

௖మ
⋅ 𝐸ሬ⃗ ቁ 𝑣⃗ , (30b) 

 using eq.(29). Evidently, the mass of the photon influences the electromagnetic field. It is 
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found that the Lorenz gauge condition for massive electromagnetic field becomes [13]  

 𝜆 = ∇ሬሬ⃗ ⋅ 𝐴 +
ଵ

௖మ

డఝ

డ௧
=

௠

ℏ
𝜑 . (32) 

 The above gauge condition reduces to the Lorenz gauge condition for 𝑚 = 0 . Note that one 

can see the electric and magnetic fields of photons due to their mass are  

 𝐵ሬ⃗ ௣௛ = −
௠௖

ℏ
𝐴 ,                𝐸ሬ⃗ ௣௛. =

௠ఝ

ℏ
 𝑣⃗ ,        𝛽 = ±1 . (30c) 

 Applying eq.(32) in eq.(30a) yields  

 𝐵ሬ⃗ ′ = 𝐵ሬ⃗ −
௠௖ఉ

ℏ
𝐴 ,                𝐸ሬ⃗ ′ = 𝐸ሬ⃗ +

௠ఝ

ℏ
 𝑣⃗ . (30d) 

 The above electromagnetic field yields massive electrodynamics. Now the electromagnetic 

field due to massive photons is given by eqs.(29) and (30). 

Now the Lagrangian of the new electrodynamics connecting the new massive fields will be  

 𝐿 =
ଵ

ଶ
𝜀଴𝐸′ଶ −

஻ᇱమ

ଶఓబ
 . (33) 

 Applying eqs.(30b) in (33), using eqs.(29) and (32), yields  

 𝐿 =
ଵ

ଶ
𝜀଴𝐸ଶ −

஻మ

ଶఓబ
+

ଵ

ଶ
 𝑚ଶ(𝑐ଶ𝐴ଶ − 𝜑ଶ) +

ఒమ

ଶఓబ
 . (34) 

 The Lagrangians in eq.(24) and (34) are those ones for massive electrodynamics. The above 

new formulation was not considered in the standard massive electrodynamics. 

4  Massive field Lorentz force  

Let us consider the Lorentz force acting on a moving charge in a massive 

electromagnetic field. This is given by the quaternionic equation  

 𝐹෨ = 𝑞𝑉෨(∇෩𝐴ሚ) ,        𝐹෨ = ቀ
௜

௖
𝑃 −

௉೘

௖
 , 𝑓 + 𝑖𝑓௠ቁ ,        𝑉෨ =

(𝑖𝑐 , 𝑣⃗) ,        ∇෩= ቀ
௜

௖

డ

డ௧
 , ∇ሬሬ⃗ ቁ , (35) 

 which upon using eq.(25), yields  

 𝑃 = 𝑞𝑣⃗ ⋅ 𝐸ሬ⃗ − 𝑞𝑐ଶ𝜆 ,                𝑃௠ = 𝑞𝑐𝑣⃗ ⋅ 𝐵ሬ⃗  , (36) 

 𝑓 = 𝑞(𝐸ሬ⃗ + 𝑣⃗ × 𝐵ሬ⃗ − 𝜆 𝑣⃗) ,        𝑓௠ = 𝑞𝑐(𝐵ሬ⃗ −
௩ሬ⃗

௖మ
× 𝐸ሬ⃗ ) . (37) 

Notice that the force 𝑓௠ is a magnetic force acting on a magnetic charge, 𝑞௠ = 𝑐𝑞 . Notice 

that the magnetic power is associated with a magnetic charge that would necessitate the 

existence of magnetic monopoles in Maxwell's equations. The disintegration of magnetic 

charges could also lead to a huge magnetic force along the wire axis. The modified Lorentz 
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force, eq.(37), involves an additional force proportional to the particle velocity. This term would 

presume a presence of a fluid permeating the whole space. This force exists even no 

electromagnetic field is present. We restore the standard electrodynamics when the field mass 

is set to zero. 

5  Concluding remarks 

We have derived in this work the inertial electromagnetic quantities arising from the 

electron and photon motions. In this scenario, a longitudinal tensile force is generated 

whenever a large current is passed in a wire. This inertial electrodynamics could also emerge 

from considering a massive electromagnetic field that extends Maxwell's equations allowing 

magnetic monopole to exist. Interestingly, the Lagrangian associated with massive photons is 

shown to yield that one previously obtained. The latter massive electrodynamics is due to Proca 

and de Broglie.  
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