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Abstract 

This review discusses recent advances in flame retardancy achieved in the 

field of cotton textiles through the deposition of novel coatings able to enhance the 

flame retardant properties of cotton fabrics. There are a variety of methods for 

creating these new coatings, including nanoparticle adsorption, layer-by-layer 

assembly, sol-gel and dual-cure techniques, and plasma treatments. In most cases, 

these concerns center on the usage or combination of ceramic protective coatings or 

flame retardant species. Different mechanisms of flame retardant systems were also 

examined. This article concludes with a discussion of the various approaches to 

developing flame retardant coatings based on halogens, phosphorus, nitrogen, silicon, 

and polymer nanocomposites. 
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1. Introduction 
 

Since many fires and flames are ignited by the burning of textile materials, 

which can cause severe burns or even death, flame-retardant textiles are necessary in 

many settings to protect against fire and protect human life. The flammability of 

synthetic fibres, which are naturally flame resistant, is very different from that of 

cellulosic fibers, which can burn easily. When exposed to an open flame, untreated 

natural fibers like cotton, linen, and silk burn quickly and easily. The density and 

structure of a fabric have a greater impact on its flame-spread rate than the fibres 

themselves. Fabrics that are thin and voluminous can easily burn up [1].  

Because synthetic fibres like nylon, acrylic, and polyester are resistant to 

combustion, it is believed that blended textiles are less flammable and spread flames 

more slowly. The rapidity with which synthetic textiles burn and their tendency to 

melt make them far more hazardous. It is possible that blended fabrics, rather than 

those made entirely of synthetic or cellulosic fibers, pose a greater fire risk. Reducing 

the flammability of cellulosic fibres has been a major challenge for the textile industry 

[2]. Cotton is both the most popular and most flammable textile material. Cotton 

fabrics should be treated with flame retardant materials for the protection of 

consumers in the military and the aerospace industries. Since the introduction of 

Pyrovatex CP and Pyrovatex CP New, phosphorous compounds like tetrakis 

hydroxymethyl phosphonium chloride (THPC) and N-methylol dimethylphosphono 

propionamide have become the standard for making long-lasting flame retardant 

finishes for cotton (MDPA).  

The fiber surface may undergo a reaction, or cross-linking structures may be 

formed [5, 6]. These chemicals act as an efficient flame retardant for cellulose 

because they prevent the formation of levoglucosan and flammable volatiles when 

heated, boost the production of char, and reduce the rate of combustion [7]. The 

phosphorus content of the treated cellulose has been found to play a crucial role in the 

effectiveness of the flame retardant. To rephrase, more flame retardant was better at 

decreasing the flammability of cellulose fiber [8]. One major drawback of these 

chemicals is that they emit formaldehyde during curing and consumer use. Since 

formaldehyde is considered to be a carcinogen agent efforts should be made to 

develop effective flame retardants that do not contain it [8].  
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Nanotechnology has gotten a lot of attention from both industry and academic 

research because of the surprising and positive results that have come from using 

nano-sized devices in many fields over the last 20 years. People have come up with 

and used different ways to improve the finishing qualities of textiles, yarns, and fibers 

[9, 10]. Nanostructured synthetic fibres [11], nanoparticles in the standard back-

coating [12, 13], and deposition of (nano) coatings [14, 15] are three of the most 

interesting ways to make something flame resistant. 

The current review examines recent developments in flame-retardant cotton 

fabric. First, we investigate coating techniques and mechanisms. In addition, the 

development of flame retardant coatings based on halogens, phosphorus, nitrogen, 

silicon, and polymer nanocomposites is reviewed and discussed 

 

2. Coating Technology 

Coating is the application of a polymeric layer to one or both surfaces of the 

fabric. When applying the viscous polymer coating, it is necessary for it to attach to the 

fabric using a blade or other aperture [16]. Inter-layer adhesion must consequently be 

high, which can be achieved by applying consecutive layers of coating. An additional top 

layer may be applied for aesthetic purposes or to enhance the coating [16]. Flame 

retardant coatings have become a common way to protect a surface from fire. It is 

easy to use and can be used on a wide range of materials [17], such as metal, 

polymers, fabrics, and wood, because it doesn't change the material's basic properties, 

like its mechanical properties. By putting nanoparticles into the component fibers or 

on their surfaces, including those of yarns and fabrics made from them, the textile 

industry has recently come up with a new way to deal with flammability and 

combustion.  

These nano-objects can move to the surface of the fibre during combustion 

and protect the polymer by acting as a "thermal shield" [18, 19]. The first is 

predicated on the potential for melt spinning to incorporate various nanoparticle types 

into thermoplastic fibers. The term "nanostructuring" refers to this efficiency. 

Alternatives include the deposition of innovative and intelligent coatings, such as 

ceramic protective layers or flame retardant species alone or in conjunction with 

ceramic protective layers, on the surface of the fabric to impart flammability 

resistance (Figure 1). New techniques, including nanoparticle adsorption, layer-by-
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layer assembly, sol gel processes, dual curing procedures, and plasma deposition, 

have been created for this purpose 

 

 

 

Figure 1: Schematic diagrame of flame-retardancy properties 
to fibres and fabrics  [19]  

 
 

Depending on how they suppress flames, "flame-safe" coatings are 

categorized as intumescent or non-intumescent. An intumescent coating is a substance 

that, when exposed to heat, can expand and form a char layer in three dimensions. 

Traditional intumescent systems [20] consist of pentaerythritol, an acid source that 

serves as a dehydrating catalyst, polyphosphate, and a blowing agent that aids in the 

formation of the porous barrier. This carbonaceous, cellular/porous residue protects 

the underlying substrate from further degradation by blocking the passage of heat, air, 

and pyrolysis products [21]. Bourbigot's team has conducted extensive research on 

such systems [22–24], and Weil has just released a state-of-the-art review of the 

literature [25]. 

 

2.1. Coatings from nanoparticle adsorption 

Adsorption of nanoparticles is the most straightforward method for modifying 

a surface with nanoparticles. The fabric is simply submerged in an aqueous 
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suspension of nanoparticles, which aids in their adherence to the fabric's fibre surface. 

The flame retardancy of synthetic (such as polyester) and natural (such as cotton) 

fabrics and their blends can be improved by applying a nanoscale coating, as was 

recently demonstrated. The polymer beneath the fibre may be shielded from heat, 

oxygen, and fire by coating it with an inorganic shield. The nanocoating can actually 

serve as a thermal insulator by sucking in ambient heat and oxygen and blocking their 

transfer to the surrounding polymer. Coatings can aid in fire spread by entrapping the 

substrate's volatile substances. The substrate is prevented from burning and instead 

undergoes pyrolysis. It has been shown that, unlike polyester, cotton fabrics treated with 

hydrotalcite and silica have effective flame retardancy [26].  

To adsorb nanoparticles, a combination of simple immersion and surface 

pretreatment with cold oxygen plasma was used. The primary goal of this study was to 

examine how immersion time and pre-treatment affected nanoparticle uptake on cotton 

fibers and the resulting cotton properties. Silica nanoparticle uptake was highest after 30 

minutes of immersion, while hydrotalcite showed no significant differences between 30 

and 60 minutes of immersion. The time required to ignite (TTI) was lengthened and the 

peak heat release rate (PHRR) was decreased when using either nanoparticles alone or in 

tandem, as revealed by scanning electron microscopy. Adsorption of nanoparticles has 

also been used to add carbon nanotube functionality to cotton fibres [27]. The 

mechanical properties, flame resistance, UV protection, and water resistance of the 

treated fibres have all been improved. 

 

2.2. Coatings from layer by layer (LbL) assembly 

Nanoparticle adsorption can be seen as having evolved into the layer-by-layer 

assembly of nanoparticles [28]. It was first developed in 1991 for 

polyanion/polycation couples to obtain so-called polyelectrolyte multilayers [29] and 

was later applied to inorganic nanoparticles by taking advantage of interactions other 

than electrostatic repulsion (such as covalent bonds, hydrogen bonds, etc.) Substrate 

immersion in a polyelectrolyte (typically water) solution with an oppositely charged 

polyelectrolyte is all that's needed for the LbL assembly via electrostatic interactions 

(or dispersion). Utilizing a total surface charge reversal after each immersion step 

[30], an assembly of positively and negatively charged layers is accumulated on the 

surface of the substrate. Figure. 2 depicts an overview of the process. Very recently, 
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this strategy proved to be extremely advantageous when applied to the flame 

retardancy of nano-coatings containing phosphorus/nitrogen/silicon [31] and SiO2-

PEI/PA [32]. 

 

Figure  2. Schematic representation of LbL assembly [30].  

 

According to the chemical nature of the deposited coatings, the LbL 

assemblies applied to fabrics will be thoroughly evaluated. 

 

2.2.1. Inorganic LbL coatings  

Recently, several research teams have looked into inorganic LbL coatings with 

the goal of developing a thermal insulator system for the fabric's outer layer. A barrier 

of this type may act as a thermal shield for the surrounding substrate, encouraging 

phenomena like char formation and discouraging the production of volatile species that 

can fuel the combustion further. Cotton's main component, cellulose, is a great 

illustration of this. In fact, a thermal insulator barrier can encourage cellulose 

dehydration, resulting in the formation of char, and inhibit cellulose depolymerization, 

resulting in the production of volatile species like levoglucosan and furan. The first 

attempt at depositing such architectures was made by Grunlan and work colleagues, 

who built structures on cotton fabrics out of laponite nano-platelets (the negative 

layer) and branched poly(ethylenimine) (the positive counterpart). 
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 Although the coated fabrics' afterglow occurred 10 seconds earlier than the 

uncoated fabrics', vertical flame tests revealed that the addition of ten bilayers did not 

significantly improve the properties of flame retardancy of cotton in terms of ignition 

and after flame times. However, the residue on the treated fabrics varied in 

appearance and was fragile (Table 1) [33].Sodium montmorillonite has been used as a 

partial solution to this problem by replacing laponite [34]. Colloidal silica (silica (+) / 

silica (-)) [35] is a completely inorganic coating that has shown promising results 

when applied to cotton fabrics. 

 

Table 1: Results on inorganic LbL coatings [36]. 

Positive counterpart  Negative counterpart Main results 
Natural fibers 
(namely, cotton) 
Polyethylenimine Laponite Afterglow of 10BL-coated cotton fabrics 

occurred 10 s earlier with respect to the 
uncoated fabrics 

Polyethylenimine Sodium montmorillonite Final residue of 10 BL-coated cotton 
fabrics after vertical flame spread tests is 
coherent and not-fragile 

Alumina-coated silica Silica 10 BL-coated fabrics exhibit a PHRR 
reduction of 20%, assessed by micro-
combustion calorimetry 

Octa-3-
ammoniumpropyl 
chloride POSS_ 

Octakis (tetra methyl ammonium) 
Penta cyclo octasiloxane octakis 
(cyloxide) hydrate POSS_ 

Afterglow time is reduced and the fabric 
weave structure and shape of the 
individual fibres are highly preserved 

Synthetic fibers 
(namely, polyester) 
Alumina-coated silica Silica 5BL-coated fabrics exhibit a PHRR 

reduction of 20% and a TTI increase of 
45%, assessed by cone calorimetry. The 
same coatings reduce the burning time 
by 95% and eliminates melt 
dripping phenomena 

Poly diallyl dimethyl 
ammonium 
chloride (PDAC) 

Zr phosphate nano-platelets PDAC-based assemblies increase TTI up 
to 86%, assessed 
by cone calorimetry 

Octa-3-
ammoniumpropyl 
chloride POSS_  
 

 POSS-based assemblies decrease PHRR 
down to 26%, assessed by cone 
calorimetry 

Alumina-coated silica 
nanoparticles 

 Silica nanoparticles promote a significant 
reduction in the smoke production rate 
(25%), together with a strong pkCO 
decrease (30%), assessed by cone 
calorimetry 
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2.2.2 Intumescent coatings  

Fires could not be extinguished by depositing a completely inorganic coating, 

despite the initial encouraging results; consequently, viable alternatives, such as those 

provided by intumescent systems, have been explored (Table 2). A carbonaceous multi-

lamellar structure (char) forms on the surface of an ignitable substance when it is 

subjected to a heat flow. This char is a physical barrier that can reduce the amount of heat, 

fuel, and oxygen that can pass through the polymer into the flame. When heated, the acid 

source, carbon source, and blowing agent in a typical intumescent system release copious 

amounts of expandable or noncombustible gases [37]. 

 

Table 2: Results on hybrid organic-inorganic LbL coatings deposited by dipping 

[36]  

Positive counterpart  Negative 
counterpart 

Main results 

Chitosan  
 

Ammonium 
polyphosphate (APP) 
 

Suppression of the afterglow phenomenon 
for cotton-rich (70%) - polyester blend; 
20BLs are able to reduce the THR (_22%) 
and PHRR (_25%), assessed by cone 
calorimetry 

Alumina-coated silica 
nanoparticles 

Ammonium 
polyphosphate (APP) 

Suppression of the afterglow phenomenon 
for cotton-rich (70%)  -polyester blend; 
10BLs are able to increase the TTI (þ40%) 
and reduce the THR (_15%), assessed by 
cone calorimetry 

Poly(allylamine) Poly(sodium 
phosphate) 

10BLs induce a significant decrease of the 
THR and PHRR when deposited on cotton 
fabrics (_80 and _60%, respectively), 
assessed by microcombustion calorimetry 

Chitosan  
 

Phytic acid 30BLs applied to cotton were able to block 
the flame propagation on cotton and to 
reduce PHRR of 50%, as assessed by 
microcone calorimeter 

An amino derivative of 
poly (acrylic acid) 
 

Sodium 
montmorillonite 

20BLs favour an increase of TTI (ca. þ40%) 
and a reduction of THR and PHRR when 
applied to cotton fabrics (_50 and _18%, 
respectively) 

A derivative of 
polyacrylamide 
 

Graphene oxide 20BLs favour an increase of TTI (ca. þ56%) 
and a reduction of PHRR when applied to 
cotton fabrics (_50%) 

 
 
2.3. Sol-gel and dual-cure coating processes 
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New materials with remarkable molecular homogeneity and physical and 

chemical properties have been developed using sol-gel synthesis [38]. Starting with 

(semi) metal alkoxides, this versatile synthetic route then proceeds to form either entirely 

inorganic or hybrid organic-inorganic coatings via a two-step reaction (hydrolysis and 

condensation) at or near room temperature. Process parameters include the type of semi- 

metal atom and alkyl/alkoxide groups present, the structure of the of semi- metal 

alkoxide, the water/alkoxide ratio, the pH (basic or acidic conditions), the temperature, 

the time required for the reaction, and the presence of co-solvents. Oxidic network 

structure and morphology are established by these factors [39]. A simplified diagram of 

this procedure is shown in (Figure 3). 

 

 

Figure 3: Sol-gel processes [39] 

 

Although sol-gel processes have been around since the 1950s, it is only 

recently that they have been used to improve the flame retardancy of textiles. This is 

because, in recent years, sol-gel derived hybrid architectures have been able to protect 

the polymer surface by exerting a thermal shielding effect, thereby improving the 

flame retardancy of the treated fabrics. As a matter of fact, these architectures can 

prevent the formation of volatile species that fuel further degradation and promote the 
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formation of char [ 14 ] by absorbing heat from the surrounding atmosphere and 

creating a physical barrier to oxygen and heat transfer. For this reason, the flame 

retardancy promoted by the sol-gel derived coatings is only effective when they 

operate in synergy or combined effects due to the fabric's limited thickness and the 

protective coating's limited shielding effect on the underlying polymer. Other flame 

retardant active species, such as those containing phosphorus and/or nitrogen, have 

been combined with sol-gel oxidic phases (typically silica). These progressions are 

discussed in the following paragraphs. 

 

 2.3.1. Inorganic architectures 

Pure silica particles or coatings make up the majority of inorganic 

architectures fabricated using the sol-gel technique. Common precursors include 

tetraethyl orthosilicate (TEOS), tetramethyl orthosilicate, (3-

aminopropyl)triethoxysilane and 3-glycidoxypropyltriethoxysilane. Recently, reactive 

-aminodiphosphonate siloxane (TTPBD) was synthesized successfully, and flame-

resistant cotton fabric was prepared using sol-gel coating technology [41]. When it 

comes to TTPBD, researchers have looked into the effects of using a variety of silica 

or other oxidic phase precursors and explored a number of process aspects that have a 

direct bearing on the morphology of the coating that is deposited on the fabrics. The 

following factors were specifically considered: - Process parameters (specifically, 

precursor to water molar ratio, temperature and time of thermal treatment [42], and 

moisture [43]), Chemical structure of the sol-gel precursors (specifically, chain length 

and number of hydrolysable groups [44], precursor Type [45]. 

 

2.3.2. Phosphorus-doped silica architectures 

Previous discussion has established that synergistic or combined effects are 

required for sol-gel derived architectures to be considered effective flame retardant 

systems [46-48]. This goal can be accomplished through one of three methods: 

1- Combining an alkoxysilane precursor with a phosphoric acid source yields 

precursors with silane and phosphate functional groups. 

2-Utilizing a silane- and phosphate-functional alkoxysilane precursor. 

3-Combining P- and N-containing chemicals with an alkoxysilane precursor that 

possesses silane and phosphate functionality. 
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2.4. Plasma treatments based coating 

In recent years, plasma's popularity has skyrocketed due to its accessibility at 

room temperature [46]. Electrons, ions, and neutral species in both their ground and 

excited states make up plasma, a gaseous medium. So-called "atmospheric plasma" 

has attracted a lot of attention because it can be used economically and industrially 

and does not necessitate a vacuum. Moreover, after an impregnation-based treatment, 

plasma treatments rarely necessitate additional energy-intensive thermal curing to 

finish reactions or remove solvent. Plasma treatment increases the fire resistance of 

substrates because ions and radicals are produced during the process. Contact between 

monomers and a plasma-treated substrate causes the monomers to undergo surface 

reactions, which can result in the creation of new functions or the initiation of 

polymerization. After being ionized, charged polymers and nanoparticles adhere more 

strongly to a charged substrate. Plasma-based surface modification takes place in a 

gaseous rather than liquid phase, in contrast to more conventional surface treatments. 

 In 1990 [47], Reports have surfaced suggesting plasma could be used to 

increase fire resistance. In order to polymerize the treatment on the surface, we used a 

treatment system that generated plasma around the substrate and directly monomer 

deposited onto the substrate. researchers in one study were able to successfully 

polymerize a siloxane on the surface of polyamide-6 [48]. The treated substrate 

ignited sooner than the untreated substrate did, despite the treatment reducing the 

peak HRR. Exposure to argon ions and radicals, the agents of surface 

functionalization and polymerization, was found to cause damage to the substrate and 

speed up its degradation. Cotton can be made flame-, water-, and oil-proof with a 

plasma coating [49]. With the addition of energy sources that can modify and form 

covalent bonds, plasma-based treatments have been brought to the commercial 

market. A UV laser that can break the covalent bonds in fabrics is included in 

multiplexed laser surface enhancement (MLSE) systems, for instance (such as, C–C 

bonds or C–N bonds). Since MLSE processes can be scaled up, factories can now 

mass-produce fabrics with special finishes like hydrophobic or antimicrobial coatings, 

or coatings that enhance dye uptake. Flame-retardant coatings can be applied to 
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fabrics using these MLSE systems without the use of any liquid processing steps [50]. 

This discovery is a game-changer for the widespread implementation of plasma-based 

surface treatments for flame-retardant coatings, and it suggests that this will be a topic 

of ongoing research for some time to come. 

3. Mechanism of flame retardants 

In textiles, flame retardants are used to inhibit or even suppress the 

combustion process by interfering with one or more burning stages, including heating, 

decomposition, ignition, and flame spread. The two broad categories of action, 

chemical and physical, in the solid, liquid, and gas phases of textile flame retardants, 

are further subdivided into the mechanisms detailed below [51, 52]. 

 

3.1 Physical action 

3.1.1 Coating theory (the principle of intumescence). 

During chemical finishing or when the flame retardants and substrate are 

heated, the flame retardants form a protective layer with low thermal conductivity on 

the fibre's surface. This shield prevents the transfer of heat, oxygen, and mass. This 

category of agents includes carbonates, inorganic borates, and phosphorus additives, 

among others. The pyrolysis of the latter results in the formation of vitreous 

pyrophosphoric or polyphosphoric compounds that are thermally stable. 

 

3.1.2 Dilution of the gas phase. 

Water vapor, carbon dioxide, sulphur dioxide, and ammonia are just some of 

the non-flammable gases released during flame retardant decomposition. These gases 

diffuse and mix with the oxygen present around the combustible cellulose, preventing 

it from igniting. As an example of this mode of action, consider the decomposition 

and subsequent evaporation of alumina trihydrate (ATH) and magnesium hydroxide. 

Melamine also sublimes, and its nitrogen-rich vapors act as a benign diluent in the fire 

[53] . 

equations 1 and 2 (Please added reference) 
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3.1.3 Cooling. 

An endothermic change, like fusion or sublimation, in the retardant can 

dissipate the heat input from a source. As a heat sink, the flame retardant prevents the 

substrate from heating to a point where combustion can continue.This mechanism also 

applies to Alumina trihydrate (ATH) and magnesium hydroxide, as their 

decomposition (equations 1 and 2) is endothermic [53] . 

 

3.2 Chemical action 

3.2.1 In the gas phase. 

Flame retardants and their breakdown products hinder the gas-phase radical 

mechanism of combustion by replacing highly reactive hydroxyl and hydrogen 

radicals with less energetic species. Especially in the case of organo halogen 

compounds like decabromodiphenyl oxide, flame retardants containing halogens 

(primarily brominated and chlorinated) work via the gas-phase mechanism and are 

often combined with metal oxides (antimony oxide, Sb2O3). In addition, certain 

phosphorus flame retardants (such as triphenylphosphate) can be effective in the gas 

phase by producing phosphorus-containing radicals that can combine with hydrogen 

radicals to extinguish the flame [53]. 

 

3.2.2. In the condensed phase. 

 Flame retardants chemically stop the solid substrate from burning and change 

the chemical reactions that happen during decomposition so that protective char is 

made instead of CO or CO2. For example, cellulose's pyrolysis process takes place in 

two stages that compete with each other between 200 and 400 °C. First, cellulose 

loses its water and turns into char, CO2, and water. Second, levoglucosan is made at 

low temperatures [53], which then dehydrates and polymerizes to make tars, gases 

that can catch fire, liquids, and other solids. Flame retardants or their decomposition 

products dehydrate cellulose without forming levoglucosan. Changing the cellulose 

decomposition path reduces flammable tars and gases and increases char. Dehydrating 

flame retardants include phosphorus and sulphur derivatives. Upon heating, they 

decompose into polyacids, which catalyze char formation via cellulose esterification 

and pyrolytic ester decomposition (equation 3) or carbonium ion charring ( equation 
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4). Ciba's Pyrovatex® CP, a dialkylphosphonopropionamide flame retardant, is 

important (bought currently by Huntsman) [53]. 

 

 

 

Intumescence-based flame retardant fabrics are a special case of a condensed-

phase mechanism. Combining charring and foaming at the surface of a burning 

substrate, intumescent systems (IFRs) protect the surface from flame. Foaming agent, 

acid source, and carbonific agent are the three main components of IFRs. The fiber in 

cellulose serves as a carboniferous agent and is one of the incendiary components. 

One example of an IFR is the ammonium polyphosphate-pentaerythritol system; 

however, spirocyclic pentaerythritol diphosphoryl chloride and melamine reacting to 

form a trifunctional molecule is preferable [53]. One major drawback of these systems 

is that even water-insoluble intumescents do not fare well in the washing machine 

unless they are either bonded to a hydrophobic resin or incorporated into the 

molecular structure of the textile fiber, both of which are impractical in practice. 

Relevant research has been conducted by phosphorylating polyol phosphoryl chloride 

with cellulose [53,54]. 

 

4. Flame retardant chemistry for application in coating 

4.1. Halogenated flame retardants  
 

Halogenated flame retardants have molecules made up of chlorine, bromine, 

and fluorine. The most effective flame retardant additives for polymers are 

organohalogen compounds [55]. However, flame retardant additives can have a wide 

range of chemical structures, from aliphatic to aromatic carbon substrates that have 

been per-halogenated (all hydrogen replaced with halogen) or come in inorganic 

forms. Organobromine compounds are much more common than those containing 

organochlorine or another halogen [56]. The C-Br bond is perfect for extinguishing 

flames, which is why organobromine compounds are widely used in fire safety. 

Although the bond is strong enough to withstand the elements, it is easily broken by 
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high temperatures, releasing the bromine to counteract free radical reactions in a fire. 

To illustrate the variety of chemical reactions that can occur in the vapor phase of 

bromine to prevent combustion, see (Figure 4). Due to the halogens' unique ability to 

suppress combustion in the vapor phase, halogen-based flame retardants are limited to 

that application. In order to increase the efficacy of halogenated flame retardants in 

the vapor phase, they are sometimes mixed with synergists like antimony oxide, zinc 

borate, or chemistry based on phosphorus. 

 

Figure 4 : Bromine free radical combustion reaction [55] 
 

 
4.2. Phosphorus flame retardants  

Some flame retardants, both inorganic and organic, contain phosphorus in 

their chemical makeup [57]. Since direct phosphorus-carbon bonds are often 

prohibitively expensive or technically challenging to achieve, most phosphorus-based 

flame retardants instead feature phosphorus-oxygen bonds with organic groups 

attached to the oxygen. Some believe that the effectiveness of these flame retardants 

is greatly enhanced in oxygen-containing polymers (e.g., cellulose and rigid 

polyurethane foam). Some typical phosphorus-based flame retardant structures are 

shown in (Figure 5). 
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 Figure 5: Common phosphorus-based flame retardants [57] 

 
Phosphorus compounds are distinctive in that, depending on their chemical 

structure and their interaction with the polymer under fire conditions, they can be 

vapor phase or condensed phase flame retardants [58]. Figure 6 depicts some 

examples of phosphorus chemistry in the vapor phase. They  are also effective in the 

condensed phase of polymer combustion [59]. As shown in (Figure 6), phosphorous 

reacts with heat to produce phosphoric acid derivatives. This acid is responsible for 

the formation of a glassy layer, which inhibits the spread of flames. One other 

category of flame retardants that makes use of phosphorus compounds is intumescent 

systems [60]. Lack of reactive groups in polymers necessitates the use of coadditives 

to generate a thick, swollen char that will shield the polymer from damage.  

Char-forming agents (polyhydric compounds like starch, dextrins, and 

pentaerythritol) that can be phosphorylated; an acid source (a precursor for catalytic 

acidic species like ammonium polyphosphate and melamine phosphate, etc.); and a 

blowing agent (like urea or melamine, which decomposes into gaseous nitrogen and 

water). The reactions that result in the formation of char are thought to be catalyzed 

by amines and amides. There are drawbacks to using these, as there are to all flame 

retardant technologies. They aren't as effective when used alone in polystyrene or 

polyolefin, and they aren't as widely applicable as halogenated flame retardants. 

Furthermore, because they inhibit polymer combustion, they generate more smoke 
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and carbon monoxide in the event of a fire, and their environmental impact is starting 

to draw regulatory scrutiny [55].  

 
(a) 

 

 
(b) 

 
Figure  6: a) Mechanisms of flame retardant reactions based phosphorus and b) 

schematic of intumescent coating [61] 
 
 
4. 3. Mineral filler flame retardants 

As part of the endothermic cooling mechanism of flame retardancy, the 

vapor/condensed phase activity of flame retardants containing mineral fillers is easily 

distinguishable. It is now common practice to use mineral fillers as flame retardants, 

with metal hydroxides and metal carbonates being the most popular examples [62]. 

For the hydroxide or carbonate to be effective, it must be able to release its water or 
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carbon dioxide at elevated temperatures without causing the polymer to decompose 

first. Hydroxides and carbonates that decompose between 180 and 400 degrees 

Celsius are therefore the only additives commonly used as flame retardants today. 

Aluminum (Al(OH)3) and magnesium (Mg(OH)2) hydroxides are two examples of 

hydroxides that are frequently used.  

Because the water is hydrated on the aluminum oxide surface rather than being 

predominated by Al-OH bonds, alumina trihydrate (Al2O3.3H2O) is a more common 

name for this compound. However, the net stoichiometry is the name, and both 

structures are used interchangeably when discussing flame retardant chemistry [63]. 

Calcium carbonate, along with other fillers (silicone) and activating materials, is used 

to make wire and cable compounds flame retardant [64]. Magnesium carbonate is also 

occasionally used for carbonates. Hydromagnesite, a slightly modified form of 

magnesium carbonate, is also put to use because it can emit water and carbon dioxide 

at milder temperatures. While synergists and mineral fillers rarely work together, 

there are cases where the two are used together as flame retardants. Some  of these 

common mineral fillers are provided below : 

 

Figure 7: Some schemes on main classes of mineral fillers [55]   

 

4.4. Nitrogen flame retardants 

As environmentally friendly and non-toxic alternatives to existing halogen 

formulations, nitrogen-based flame retardants are becoming increasingly popular. In 

addition, nitrogen-based flame retardants can be recycled along with the materials 

they are used in. Most melamine derivatives, which are nitrogen-based compounds, 
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are used as flame retardants because they extinguish flames both in the gaseous and 

condensed phases [65]. 

4.5. Silicon flame retardant 

Silicon-based flame retardants are seen as a good alternative to halogenated 

flame retardant compounds because they don't produce corrosive smoke when they 

burn [66, 67] and can be used in coatings without harming the environment. Silicon-

based coatings are mostly made by adding silicones, silicates, organosilanes, or 

silsesquioxanes as filler sand copolymers or as the main polymeric matrix to the 

whole system. "Network armor" made of silicon dioxide (SiO2) has also been used to 

make flame retardant coatings. Hydrolysis and condensation of the precursor 

tetraethyl orthosilicate (TEOS) was followed by cross-linking on the surface of fibers 

(sol-gel process) to create this "armor" [67]. 

 

4.6. Polymer Nanocomposite (PNC) based coating systems 

In terms of enhancing the flame retardant properties of a number of 

polymermatrices, research and development on various polymer nanocomposites over 

the past two decades has shown great promise. A few examples of typical nano-sized 

inorganic fillers are layered silicates, silsesquioxane derivatives, layered materials 

(2D) like montmorillonite clay (MMT), layered double hydroxides (LDH), and 

layered zirconium phosphate, tubes/rods (1D) like carbon nanotubes, and 

spherical/colloidal solids (0D) like polyhedral oligosilsesquixane [68,69]. The 

degradation of nanocomposites is significantly influenced by the interaction between 

polymer and particle at the interface. By acting as restriction sites for a polymer 

chain's motion, particles can be made to interact strongly, which shifts the material's 

degradation temperature and makes the scission chain harder at lower temperatures 

[70]. The most prominent nanoparticles used in commercial nanocomposite formation 

are carbon nanotubes/ nanofibers and clay nanoparticles (organically treated layered 

silicates). 

Due to thermal instability issues associated with the organic treatment of the 

clay's surface, the polymers into which they can be incorporated are restricted [71]. 

When compared to other nanomaterials, carbon nanotubes and nanofibers don't 

experience the same degree of thermal instability, but they can be difficult to work with 

because of their high cost or poor interface with many polymers. Overall, the 



181 
JQUS:  Vol. 2, Issue 1, 161-186 (2023) 

 

nanoparticles slow polymer pyrolysis, which lowers the rate of heat release during 

polymer combustion and, thus, reduces the rate of mass loss. The decomposition of 

polymer nanocomposites forms a protective barrier, which accounts for the decreased 

mass loss rate. The nanopartices are driven upward toward the polymer matrix surface by 

the numerous bubbles of degradation products. Because of this, the composite surface is 

insulated from the condensed phase's temperature by an inorganic barrier [72]. To 

incorporate nanoscale inorganic particles into an organic matrix, sol-gel processing is 

one of the most well-known methods [73,74]. 

 

5. Future outlook and conclusion 

Nanotechnology is now an important part of making new flame-retardant 

systems and is being used in more industries. The most recent innovation in fire-safe 

materials is polymer nanocomposites. and there is a lot of hope that they will lead to 

new fire-safe materials that can be used in both commercial and noncommercial 

settings. The benefits of nanocomposites are much more important than their cost. It 

can allow flexible coating architecture and microstructural design to meet a wide 

range of needs, such as precise control of physical, chemical, and mechanical 

properties and the creation of assemblies with multiple functions. Combining 

nanoparticles with other systems that already contain flame retardants seems like a 

good way to give the substrate better flame resistance. 

Biomacromolecules in general have been investigated as a new, green 

approach to flame retardancy from an ecological standpoint. Research in both industry 

and academia is being driven by the possibility that environmentally friendly flame 

retardant systems could one day replace conventional chemicals. In particular, using 

flame retardant systems based on natural macromolecules like proteins or nucleic 

acids could be an unorthodox but highly effective strategy because they do not 

contain halogens or formaldehyde. 
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