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Abstract
We studied the temperature effect in isospin-singlet pairings in Gamow-Teller excitations. We use theories
of a hole-particle in the mean-field shell model to study decay transition using the one-particle-one-hole
model for the ˇ-decay of odd-even isotopes and the two-particle-hole models for the ˇ-decay of even-even
and/or odd-odd isotopes. Our reference isotopes for the one-particle-one-hole model are 15O, 15N, 17F, and
41Sc, whereas for the two-particle-hole model we use 16N (for ˇ�-decay) and 56Ni and 40Sc (for ˇC/EC).

The calculations involve evaluating the matrix elements of Gamow-Teller and Fermi transitions, then
calculating the reduced transition probabilities of Gamow-Teller and Fermi, from which we evaluate the
half-lives and the strength function f t . The results are compared with the available experimental data.
For the one-particle-one-hole model, we found there is a deviation from experimental values which indicates
that the model is not valid for beta decay for the even-even nuclei in the ground state due to the residual
nucleon-nucleon interaction. As for a two-particle-hole model, we calculated the transition amplitude, from
which we calculated the strength of the transition log f t values. We found an excellent agreement between
experimental and theoretical results.

By drawing the relationship between temperature versus log f t values, we found the general trend is
that the strength function values slowly decrease as temperatures increase. There are fluctuations log f t
due to the strongly dependent of log f t on the shell configuration of the valence nucleons.
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1. Introduction

Nuclear ˇ-decay plays an important role in nuclear physics in particular and in various branches of science
in general, such as astrophysics and particle physics. The investigation of ˇ-decay provides valuable insights
into how effective nuclear interactions depend on the spin and isospin, as well as on nuclear properties such
as masses, shapes, and level densities [1, 2]. In astrophysics, ˇ-decay is responsible for the formation of
neutron stars, the factories of heavy elements in our universe [3] by setting the time scale of the rapid
neutron-capture via the half-lives of ˇ-decay. In particle physics, ˇ-decay offers the first experimental
evidence of parity violation [4], and is utilized to verify the unitarity of the Cabibbo–Kobayashi–Maskawa
(CKM) matrix [5].

Beta decay results from the presence of a weak force, which undergoes a relatively slow decay time.
Nucleons are formed from up and down quarks, and the quark has a weak strength which contributes



to changing the flavor of lepton by producing the W boson, which produces an electron/antineutrino or
positron/neutrino pair. The most obvious example is the decay of a neutron, which consists of an up quark
and two down quarks, to produce a proton that consists of two up quarks and a down quark.

The process of measuring the beta decay strength functions, and hence the decay half-lives, in an
accurate way, is a required and necessary method and can be applied Beyond the Standard Model (BSM)
as a way to search for new fundamental physics can be discovered through beta decay in atomic nuclei.
The problem of understanding the ’background’ of the Standard Model and its related perception of the
low-energy quantum chromodynamic effects that appear in the form of a nuclear structure is one of the
outstanding difficulties hampering the discovery of new physics.

The difficulty of treating experimentally-favored nuclei theoretically in a framework that allows for
measured uncertainty makes the issue worse. Nevertheless, advancements have been achieved over the past
several decades that allow for the systematic construction of the internucleon interaction within a strong
field theory framework. The medium-mass nuclei, frequently relevant for BSM searches, can now be treated
ab initio, thanks to developments in the many-body theory and computer power [6]. Of course, there is
still much to be learned about effective-field theory and how approximation strategies used in ab initio
computations affect the relevant observables.

With the achieved advances in the measurement of nuclear ˇ-decay half-lives due to the development
of radioactive ion-beam facilities, a complete listing of the experimental data is available nowadays [7]. It
is imperative to test the fundamental theoretical model and their abilities to reproduce the experimental
values to determine the weak and/or strength points in these models.

This review study presents the latest conventions in the theory of ˇ-decay theory and procedures to
evaluate the transition matrices due to the ˇ-decay [8]. Then focuses on ˇ-decay transition in one-particle-
hole and two-particle-hole nuclei schemes. The one-particle-hole theory is utilized to predict the half-lives of
odd-even nuclei: 15O, 17F, 39Ca, and 41Sc. whereas, the two-particle-hole theory is utilized to calculate the
strength functions of the EC/ˇC-decay of 56Ni as an even-even nucleus, the ˇ-decay of 16N as an odd-odd
nucleus, and finally the EC/ˇC-decay of 40Sc as an odd-odd nucleus. The reason for choosing these isotopes
is to study the effect of residual NN force on the valence nucleons. It is expected that such a force plays
a greater role for an even number of nucleons than an odd number [9] which suppresses the single particle
transitions. The temperature effect on the strength functions is presented. Finally, the study presents
conclusions and suggestions for further studies.

2. Theoretical background

2.1. Theory of nuclear ˇ-decay

In the nuclear scale the ˇ�-decay is written as

A
ZXN !

A
ZC1YN�1 C e

�
C N�e: (1)

The nuclear ˇC-decay is
A
ZXN !

A
Z�1YNC1 C e

C
C �e: (2)

Finally nuclear EC reads
A
ZXN C e

�
!

A
Z�1YNC1 C N�e: (3)

In the three processes, shown in fig.(2), the parent nucleus AX and the daughter nucleus AY are isobars, i.e.
both have the same mass number A. This process has a coupling constant GF which is not fundamental.
It involves two fundamental vertices of weak coupling gW . The strength of weak interaction is measured in
muon decay, shown in fig.(1), where q2 < m�c

2 D 106MeV. Thus the W -boson propagator in the natural
unit can be written

�i
�
g�� � q�q�=m

2
W

�
q2 �m2W

�
ig��

m2W
:
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In muon decay this becomes g2W =m
2
W . Hence, the weak coupling gW can be related to GF using [10]

GF
p
2
D

g2W
8.mwc2/2

: (4)

This is valid for large mass of W -boson and small energy q2 of ˇ-decay, i.e. q2 � .mW c
2/2. In case of

q2 � .mW c
2/2 the weak interaction is more probable than electromagnetic force. In other words, the weak

interaction is only weak because of the large W -boson mass (mW D 80:403 ˙ 0:029 GeV/c2). For muon
decay GF D 1:16639.1/ � 10

�5 GeV�2 [10].

Figure 1: Feynman diagram depicts the weak muon decay. The W -boson propagator carries momentum q,
where q2 � .mW c

2/2, for precise measurements of the weak coupling gW .

Figure 2: Nuclear ˇ�, ˇC, and EC decay diagrams. Only one nucleon contributes to the ˇ decay process
whereas the remaining A� 1 nucleons are spectators. The initial and final states ‰i and ‰f are the initial
and final nuclear states of a strongly interacting A-body wave function. GF is the pointlike strength of the
weak interaction vertex.

2.2. Allowed ˇ decay

We consider the lepton final state emitted in s-state .l D 0/ relative to the nucleus (isotropic emission).
Similarly, in allowed EC the initial electron is from an s-shell, and the final neutrino is in an s state relative
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to the nucleus. Other ˇ-decay processes involving higher values of leptons orbital angular moment (p-state,
d -state, etc.) are traditionally called forbidden beta transitions 1.

The general ˇ-decay N1 ! N2C leptonCantilepton means each lepton carries spin s D 1
2
. The ˇ˙decay

final leptonic state can couple to total spin sleptons D 0; 1. In the EC process the initial proton and electron
can couple to j ˙ 1

2
and the final neutrino can couple to j ˙ 1

2
or j � 1

2
. Thus in all cases, the lepton

spin can change nuclear total angular moment J by 0 or 1. In allowed ˇ-decay, transitions with no angular
momentum change are called Fermi transitions and those with total angular momentum change by one unit
are called Gamow-Teller transitions [11]. There is no source for parity changing allowed ˇ-decay transition
.�1/�l D C1 [11]. In the standard model, the lepton number is considered to be conserved separately for
each lepton flavor: electron e, muon �, and tau � .

Table 1: Electric charge q, baryon number B, lepton number L, and mass m for fermions involved in the
ˇ-decay.

particle q B L m (MeV/c2)

electron .e�/ �e 0 C1 0:511

positron .eC/ Ce 0 �1 0:511

electron neutrino .�e/ 0 0 C1 0

electron antineutrino . N�e/ 0 0 �1 0

proton .p/ Ce C1 0 938:3

neutron .n/ 0 C1 0 939:6

Table 2: Selection rule for allowed ˇ-decay transitions. Here Ji .Jf / is the angular momentum of the initial
(final) nuclear state and correspondingly for the parity � [12].

Type of transition �J D
ˇ̌
Jf � Ji

ˇ̌
�i�f

Fermi 0 +1
Gamow-Teller 1.Ji D 0 or Jf D 0/ +1
Gamow-Teller 0,1.Ji > 0; Jf > 0/ +1

2.3. Half-lives, reduced transition probabilities, and f t values

Half-life represented by t 1
2
is computed from transition probability Tf i ,

t 1
2
D

ln 2

Tf i
; (5)

Tf i is calculated Fermi golden rule of time-dependent perturbation theory [13] to get

t1=2 D
�

f0.BF C BGT /
; (6)

where � (kappa) is a constant [12]

� D
2�3„7 ln 2

m5ec
4G2F

D 6147s; (7)

1Forbidden does not indicate that the transition is completely not allowed. The vast contribution to ˇ-decay transition is
due to s-state leptonic emission.
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f0 is the lepton kinematics phase space integral, BF and BGT are the Fermi and Gamow-Teller reduced
transition probabilities needed to be calculated, respectively. They can be broken up into factors [8],

BF D
g2v

2Ji C 1
jMF j

2 ; (8)

and

BGT D
g2A

2Ji C 1
jMGT j

2 ; (9)

where Ji is the total angular momentum (nuclear spin) of the initial nuclear state. gV and gA are coupling
constants for vector current and axial current, respectively [14]. MF and MGT are the interaction am-
plitudes. The quantity f0t 1

2
(written as f t value) represents the allowed ˇ-decay transition. It depends on

the nuclear structure, which is contained in the reduced matrix elements. In ref.[13] it has been called the
reduced half-life or comparative half-life. The vector coupling constant gV D 1:0, its value is determined by
conserved current j� D 1

2
N � [8].

The factor gA D 1:25, is the axial vector coupling constant of the weak interaction determined by partially
conserved axial vector current j

�
A D

1
2
N �5 . All those currents are calculated using the standard model.

gA is affected by many-nucleon correlation (pairing residual interaction) value reduced by 20-30% is some
times used [8]. The presence of both vector and axial vector coupling constant in t 1

2
relation (6) reflects the

parity non-conserving nature of the weak interaction [4]. Vectors have parity properties, EV .�Er/ D � EV .Er/

under space inversion. On the other hand, axial vector (pseudo vector) EA are invariant under space inversion,

EA.�Er/ D C EA.Er/:

For lepton current the violation of parity conservation is maximal, and the weak interaction amplitude
for the leptonic contribution contains the combination V �A in equal division. This holds in the quark level
of the hadrons [10]. The hadronic current

j / V � .
gA

gV
/A D V � .1:25A/: (10)

Thus the V � A current is proportional to

V � A / N �
�
1 � 5

�
 :

The minus sign is an indication of the left-handedness of the Leptons involved in weak interactions. Since
the f t value is very large can be suppressed by logarithm,

log f t D log10.f0t 1
2
Œs�/: (11)

2.4. Wigner-Eckart theorem

Assume T .k/
q is spherical tensor operator (such as angular momentum operators) acts on angular momentum

basis jjmi. Transition amplitude due to the tensor operator is given by [15, 16]D
�f I jfmf

ˇ̌̌
T .k/q

ˇ̌̌
�i I jimi

E
DMımf ;miCq

M D 0 unless mf D mi C q. This is the Wigner-Eckart Theorem. The matrix elements of tensor operators
with respect to angular-momentum eigenstates satisfy [16]

D
� 0I j 0m0

ˇ̌̌
T .k/q

ˇ̌̌
�I jm

E
D hjmI kq

ˇ̌
jkI j 0m0

˛ D� 0j 0 T .k/ �j E
p
2j C 1

; (12)
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where the double-bar matrix element is independent of m and m0, and q. Here � this amplitude represents
transition from j�I jmi to j� 0I j 0m0i. Before we present a proof of this theorem, let us look at its significance.
First, we see that the matrix element is written as the product of two factors. The first factor is a Clebsch-
Gordan coefficient for adding j and k to get j 0. It depends only on the geometry-that is, on the way
the system is oriented with respect to the z-axis. There is no reference whatsoever to the particular nature
of the tensor operator. The second factor does depends on the dynamics; for instance, � may stand for
the radial quantum number, and its evaluation may involve, for example, the evaluation of radial integrals.
On the other hand, it is completely independent of the magnetic quantum numbers m, m0, and q, which

specify the orientation of the physical system. To evaluate h� 0; j 0m0jT .k/q j�; jmi with various combination
of m, m0, and q0 it is sufficient to know just one of them: all others can be related geometrically because
they are proportional to Clebsch-Gordan coefficients, which are known. The common proportionality factor

is h� 0; j 0
T .k/ �j i, which makes no reference whatsoever to the geometric features. The selection rules

for the tensor operator matrix element can be immediately read off from the selection rules for adding
angular momentum. Indeed, from the requirement that the Clebsch-Gordan coefficient be nonvanishing, we
immediately obtain the m-selection rule derived before and also the triangular relation jj � kj � j 0 � j Ck.

There are different conventions for the reduced matrix elements. One convention that includes an
additional phase and normalization factor with the aid of 6j symbol [15, 17]

D
� 0I j 0m0

ˇ̌̌
T .k/q

ˇ̌̌
�I jm

E
D .�1/j�m

�
j 0 k j

�m0 q m

� D
� 0j 0

T .k/ �j E : (13)

2.5. Fermi and Gamow-Teller matrix element

In the beginning, let us review the scales of ˇ-decay we need to evaluate the transition matrices for. They
are as follow

1. Quark scale. According to standard model the ˇ�-decay is attributed to weak flavor symmetry of u
and d quarks, according to

u! d C e C N�e:

2. Nucleon scale. The ˇ�-decay is due to decay of free (or quasi-free) neutron, according to

n! p C e C �e:

3. Nuclear scale, where the ˇ�-decay is due to the nuclear decay given in eq.(1)

For nucleon scale ˇ�-decay, we denote the proton using index a or f , and the neutron using index b or
i . Whereas for ˇC-decay,we denote the neutron using index a or f , and the proton using index b or i .

Fermi matrix element MF [18] and Gamow-Teller (GT) matrix element MGT [19] are the most im-
portant values needed to be calculated using the initial and final nuclear wave functions which carry the
nuclear structure information. Fermi operator is just the unit operator O1. GT operator is the Pauli spin
operator O� . These operators are the simplest scalar and axial vector operators that can be constructed.
The selection rules are shown in table (2).

The Fermi and Gamow-Teller matrix can be written as [8]

MF D

D
�f Jf

O1 �iJi E D ıJiJf X
a;b

MF .f i/
D
�f Jf

hc�f Qcii�JD0 �iJi E ; (14)

and

MGT D
˝
�f Jf k O�k �iJi

˛
D

X
a;b

MGT .f i/
D
�f Jf

hc�f Qcii�JD1 �iJi E ; (15)
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where MF .f i/ and MGT .f i/ are the single-particle matrix for Fermi and GT, respectively. They can be
written as [15, 17]

MF .ab/ D MF .f i/ D
D
f
O1 iE D ıf i Ojf

D

D
nf lf jf

O1ni liji E D ınf ni ılf li ıjf ji Ojf ; (16)

and [15, 17]

MGT .ab/ D MGT .f i/ D
1
p
3
.f k O�k i/ D

1
p
3

˝
nf lf jf k O�kni liji

˛
D

1
p
3

r
3

2
� 2ınf ni ılf li O|f O|i .�1/

lfCjfC
3
2

�
1
2

1
2

1

jf ji lf

�
;

D
p
2ınf ni ılf li O|f O|i .�1/

lfCjfC
3
2

�
1
2

1
2

1

jf ji lf

�
: (17)

2.6. Symmetry properties of SP-matrix element

Since we do not have orbital degrees of freedom, the symmetry properties for Fermi single-particle matrix
is

MF .ab/ DMF .ba/; (18)

which means that Fermi transitions for ˇCand ˇ�are similar. For the GT transition, we have

MGT .ab/ D .�1/
jaCjbC1M.ba/: (19)

The Gamow-Teller single-particle matrix element for the lowest lj combinations are independent of n as
long as �n D 0 and thus they obey the selection rule �l D 0. Table (3) gives the GT SP-matrix. These
matrix elements are calculated using a C++ function based on eq.(17).

Table 3: Gamow-Teller single-particle matrix elements.

a=b s 1
2

p 3
2

p 1
2

d 5
2

d 3
2

f 7
2

f 5
2

g 9
2

s 1
2

p
2 0 0 0 0 0 0 0

p 3
2

0 2
p
5
3

�
3
4

0 0 0 0 0

p 1
2

0 4
3

�

p
2
3

0 0 0 0 0

d 5
2

0 0 0

q
14
5
�

4p
5

0 0 0

d 3
2

0 0 0 4p
5
�

2p
5

0 0 0

f 7
2

0 0 0 0 0 2

q
6
7
�4

q
2
7

0

f 5
2

0 0 0 0 0 4

q
2
7
�

q
19
7

0

g 9
2

0 0 0 0 0 0 0 1
3

q
110
3

2.7. Phase-space factors

The half-life contains the integrated leptonic phase space which is called a phase-space factor f0. Some
references call it Fermi integral. For ˇ˙-decay, the phase-space factor is [7]

f
.˙/
0 D

Z E0

0

F0.�Zf ; "/p".E0 � E/2d"; (20)
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F0 is the Fermi function. E is the energy ratio given by

E D
Ee

mec2
; (21)

where Ee is the total energy of the emitted electron or positron. E0 denotes the nuclear energy difference

E0 D
Ei �Ef

mec2
; (22)

where Ei and Ef are the initial and final energies, respectively, for nuclear states. The momentum is given
by

p D
p

E2 � 1: (23)

For electron capture the phase-space factor is [7]

f
.EC/
0 D 2�.˛Zi /

3.E0 CE0/2; (24)

where

E0 D
mec

2 � B
mec2

� 1 �
1

2
.˛Zi /

2; (25)

where B is the atomic binding energy of the captured electron usually (1s orbital) and

˛ D
e2=4��0

„c
D

1

137
; (26)

is the fine structure constant. The approximation for E0 in eq.(25) is valid for ˛Zi � 1, which holds for light
nuclei Zi < 40. The phase-space factors eq.(20) or eq.(24) are functions of the nuclear energy difference
E0. The final state for ˇ˙-decay involves a three-body state (one baryon and two leptons), which reflects a

complicated kinematics in E0 dependence of f
.˙/
0 . In EC the final state is a two-body state and the energy-

momentum conservation result in a definite energy for the emitted neutrino. The ˇ˙-decay spectrum of the
emitted electron or positron is continuous due the distribution of energy among the three body systems.
An example of the spectrum is shown in fig.(3).

Figure 3: The ˇ decay spectrum of tritium .3H!3He/. The red sharp spectra are for neutrinoless decay.
Taken from [20].

The Fermi function (20) can be approximated using non-relativistic analytical technique, known as
Primakoff-Rosen approximation [21]

F0.Zf ; E/ �
E
p
F .PR/o .Zf /I F

.PR/.˙/
0 .�Zf / D

2�˛Zf

1 � e�2�˛Zf
: (27)

8
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This approximation yields good results for high Q values. We can expand the phase-space factor in eq.(20)
[7, 21]

f
.˙/
0 �

1

30

�
E50 � 10E

2
0 C 15E0 � 6

�
F
.PR/.˙/
0 .�Zf /: (28)

2.8. ˇ-decay Q-values

The Q-value for any nuclear reaction or decay is given by

Q D Kf CKi D Ei �Ef : (29)

Using eq.(22), For ˇ�-decay we have

E0 D
Qˇ� Cmec

2

mec2
: (30)

For ˇC-decay we have

E0 D
QˇC Cmec

2

mec2
: (31)

Finally, for EC

E0 D
QEc �mec

2

mec2
: (32)

The Q-values for all decays are listed in [7]. E0 represents the endpoint energy of the decay. The decay
half-life can be calculated directly once the one-body transition densitiesD

�f Jf

hc�a Qcbi �iJi E ; (33)

are known.

2.9. Classification of ˇ-decay

The classifications of ˇ-decay is done interms of log f t values, given in table (4) [22].

2.9.1 Superallowed transitions

Take place for light nuclei such as 31H;
14C;15C; : : :, where all protons and final neutrons at the Fermi level

result from an overlap in the initial and final nuclear wave function. This means that the transitions are of
the SP-type and yield maximum value of the F and GT matrix element.

2.9.2 l-forbidden allowed transitions

This type occurs in the case where simple SP transition in mean-field shell-model picture, forbidden by
�l D 0 selection rule included in eq.(16) and eq.(17) The selection rules in Table (2) are fulfilled. This
means the forbiddingness is due to a single configuration approximate for ‰i and ‰f . Using a configuration
mixing based on the residual interaction, such as the pairing effect, removes this forbiddingness and gives a
finite value for log f t , which is usually below 5 due to the lack of strength in the configuration mixing [23].

2.9.3 Unfavorable allowed transitions

Such transitions do not belong to either of the two types discussed above. They are allowed SP transitions
in that there is no l forbiddingness. However, the SP transitions are suppressed in the ‰i and ‰f due to
the residual interaction.
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Table 4: Classification of ˇ-decay transitions.

Type of transition log f t

Superallowed 2:9 � 3:7

Unfavoured allowed 3:8 � 6:7

l-forbidden allowed � 5:0

First-forbidden unique 8 � 10

First-forbidden non-unique 6 � 9

Second-forbidden 11 � 13

Third-forbidden 17 � 19

Fourth-forbidden > 22

3. Results and discussion

3.1. ˇ�Decay transition in one-particle and one-hole nuclei

These are the simplest possible nuclei, which are considered stepping stone to more complex structure.

3.2. Matrix elements

The wave functions of one-particle and one-hole nuclei can be written as,

j‰i i D jni lijimi i D c
�
i jCOREi ; (34)

and ˇ̌
‰f
˛
D
ˇ̌
nf lf jfmf

˛
D c

�

f
jCOREi : (35)

For the one-hole nuclei, the wave functions are,

jˆi i D
ˇ̌̌
.ni limi /

�1
E
D h

�
i jHF i ; (36)ˇ̌

f̂

˛
D

ˇ̌̌�
nf lfmf

��1E
D h

�

f
jHF i :

The one-body transition densities, derived according to Fermi golden rule areD
‰f

hc�a; Qcbi
L

‰i E D OLıaf ıbi ; 0 (37)

and D
f̂

hc�a; Qcbi
L

ˆi E D OLıaiıbf .�1/jiCjfCL: (38)

Here OL is a Wigner-Eckart normalization

OL D
1

p
2LC 1

; (39)

where L is the resultant orbital angular momentum of the Li and Lf coupling. Recall thath
c�a; Qcb

i
L
D

X
M˛;Mˇ

hLaM˛LbMˇ jLM ic
�
˛ Qcˇ jCOREi; (40)

and using (14) and (15) we have

MF D

D
�f Jf

O1 �iJi E D ıJiJf X
a;b

MF .ab/
D
�f Jf

hc�a Qcbi
�JD0

 �iJi E ; (41)
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and

MGT D
˝
�f Jf k O�k �iJi

˛
D

X
a;b

MGT .ab/
D
�f Jf

hc�a Qcbi
�JD1

 �iJi E : (42)

According to (18) and (19), there are symmetry relations between one-particle and one-hole amplitude,

MF .‰i ! ‰f / D �MF .ˆi ! f̂ / D ıif O|i ; (43)

and

MGT .‰i ! ‰f / DMGT .ˆi ! f̂ / D
p
3MGT .ab/; (44)

where MF and M GT .ab/ are single particle (SP) Fermi and Gamow-Teller matrix elements. respectively.
These are substituted into eq.(8) and eq.(9), which yields

BF D
g2v

2J C 1
jMF j

2 ; (45)

and

BGT D
g2A

2J C 1
jMGT j

2 ; (46)

where we obtain

BF D g
2

V
ıif ; (47)

and

BGT D g
2
A

3

2Ji C 1
jMGT .ab/j

2
D g2A

3

2Ji C 1
jMGT .f i/j

2 : (48)

The values are taken from references [8, 14]. The relation is valid for transitions between one-particle states
and for transitions between one-hole states.

3.3. Calculating EC half-life for 15O and 15N isobars

The electronic capture equation is

e C 15
8O7

EC
�

15
7N8 C �e:

We can calculate the Q-vlaue as

QEC D 2:754 MeV:

The experimental log f t value is 3.6 meaning the transition is superallowed. The decay scheme and exper-
imental information are shown in fig.(4).

 

15O 

 
1/2- (t1/2 = 122 s) 

QEC = 2.754 MeV 

100% 
log(ft)exp = 3.6 

 
1/2- 

15N 

Figure 4: The decay scheme of 15O in ground state to 15N ground state via the ˇC=EC decay mode. The
experimental half-life, Q value, branching and log.f t/ value are shown in the figure.

The Fermi SP-matrix is

MF .ab/ D hf kO1kii D ıf i O|a D
˝
nf lf jf k1kni liji

˛
D ınf ni ılf li ıjf jiJb: (49)
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Figure 5: Single particle states of 15O generated using JISP6 potential in 8-shell model space. The SP
particle transition �0p1=2 ! �0p1=2 energy is �E D 5:221 MeV.
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Using eq.(47), the reduced Fermi matrix is thus

BF D g
2
V D 1:0; (50)

The GT SP-matrix is

MGT .f i/ D
1
p
3
hf k O�kii D

1
p
3

˝
nf lf jf k�kni liji

˛
D

1
p
3

r
3

2
� 2ınf ni ılf li O|f O|i .�1/

lfCjiC
3
2

�
1
2

1
2

1

jf ji Lf

�
D �

r
2

3
: (51)

The 6j symbol is calculated using Mathematica. Make use eq.(51) into eq.(9) the reduced GT transition
matrix is thus

BGT D g
2
A

3

2

ˇ̌̌
MGT .�0p 1

2
! �0p 1

2
/
ˇ̌̌2
D .1:25/2 �

3

2
.�

r
2

3
/2 D 0:521: (52)

Make use eq.(50) and eq.(52) into eq.(6), we obtain

f0t 1
2
D

6147s

BF C BGT
D

6147

1:0C 0:521
D 4041:4 s: (53)

Using the experimental half-life t1=2 D 122 s, we can obtain the f0 using eq.(6) which yields

f0 D
4041

122
D 33:12: (54)

This corresponds to log.f t/ value
log.f t/ D 3:61; (55)

as shown experimentally. The f0 phase space function can be broken into two phase space functions: one
for ˇC-decay and the other for EC decay. Therefore,

f0 D f
.C/
0 C f EC0 : (56)

The nuclear energy difference in eq.(22) is

E0 D
QEC� �mec

2

mec2
D
2:754 � 0:511Mev

0:511Mev
D 4:389: (57)

We can use Primakoff-Rosen approximation eq.(27) [21]

F .PR/.˙/o .�Zf / D
2�˛Zf

1 � e�2�˛Zf
D

2� 1
137
.7/

1 � e�2�
1
137

.7/
D 0:848; (58)

with the aid of the phase space expansion (28) we find f
.C/
0

f
.C/
0 D 42:3; (59)

and use eq.(24) we get
f EC0 D 0:036: (60)

We notice that f EC
0 << f

.C/
0 , which indicates that the transition is dominated by ˇC. The total value

of the phase factor becomes

f0 D f
EC
0 C f

.C/
0 D 42:336; (61)
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Hence
log.f0/ D 1:63; (62)

using the value of log.f t/ in eq.(55), we can calculate the decay half-life

t 1
2
D 10.logf t�logf0/ D 10.:3:61�1:63/ D 95:5 sec; (63)

This deviate from the experimental half-life (t1=2 D 122 sec). The previous steps for calculating the half-lives
for one-particle-hole isotopes are coded using C++ code-named ”beta decay halflife oneph.cpp” to generate
the data shown in table (5).

Table 5: Half-lives for odd-even (even-odd) isotopes computed using one-particle-hole technique. The
computed values are compared with the experimental results.

Beta Decay Q
.exp/
EC (MeV) log.f0/ log.f t/ t 1

2
(s) t

.exp/
1
2

(s)

15O .1=2C/! 15N .1=2�/ 2:754 1:626 3:606 95:5 122
17F .5=2C/! 17O .5=2C/ 2:762 1:624 3:283 45:6 64:5
39Ca .3=2C/! 39K .3=2C/ 6:524 3:671 3:500 0:675 0:86
41Sc .7=2�/! 41Ca .7=2�/ 6:495 6:495 3:308 0:456 0:59

3.4. Beta decay to and from the even-even ground state

Charge-changing excitations of particle-hole nuclei can undergo beta decay to the reference nucleus. The
initial state is an odd-odd nucleus, generated by making charge-changing particle-hole excitations of the
particle-hole vacuum. Let the final state be the particle-hole vacuum jHF i is the ground state for the
reference nucleus. Particle-hole excited states are created by letting one nucleon jump from a state below
the Fermi level to a state above it [24]. The wave functions of particle-hole nuclei isˇ̌

ab�1IJM
˛
D

h
c�ah

�

b

i
JM
jHF i D

h
c�a Qcb

i
JM
jHF i ; (64)

The wave functions are normalized˝
ab�1IJM jcd�1IJ 0M 0

˛
D ıacıbd ıJJ 0ıMM 0 : (65)

Using (12), with the aid of eq.(64) and normalization (65), The ˇ-decay matrix elements are constructed
from the transition density

D
HF

hc�a Qcbi
L

 aib�1i IJi E D ıLJi ıabi ıbai .�1/
jai�jbiCJi

i
p
2Ji C 1

D ıLJi ıabi ıbai .�1/
jai�jbiCJi

i
OJi (66)

Inserting eq.(41) and eq.(42), yields

MF .aib
�1
i / D ıJi0ıaibi O|ai ; (67)

and
MGT .aib

�1
i / D �

p
3ıJi1MGT .aibi /; (68)

where the symmetry relations (18) and (19) are used. In the case of the odd-odd nucleus has a low-lying
state below the particle-hole vacuum of the reference nucleus, ˇ-decay occur from vacuum to the odd-odd
nucleus. This is common in light nuclei. Therefore eq.(66) is now replaced byD

af b
�1
f IJi

hc�a Qcbi
L

HF E D ıLJf ıaaf ıbbf OJf : (69)
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Substituting eq.(41) and eq.(42), yields

MF .af b
�1
f / D ıJf 0ıaf bf O|af ; (70)

and
MGT .af b

�1
f / D �

p
3ıJf1MGT .af bf /: (71)

3.5. Calculating the strength function of 56Ni decay

The ˇC= EC of
56
28NiC

0
�1e !

56
27Co29 C �: (72)

The 56Ni is in the ground state 0C, whereas 56Co can be formed at excited states. The excited states of
56Co is shown in fig.(6). The Q-value of the decay is QEC D 2:13 MeV. This means the possible excited
states 56Co can form at 2.06 MeV. This includes states 1C, 2C, 3C, 4C, 5C, and 6C.

Figure 6: Energy levels of 56Co. The 56Co is the by-products of the 56Ni EC decay with QEC D 2:13 MeV.
Thus 56Co is formed in states with energy less than Ex � 2:06 MeV. Taken from International Atomic
Energy Agency.

In the SP scheme, the valence of 56Ni in the ground state is shown in fig.(7). It shows that the core
jCOREi� is filled with 20 protons and jCOREi� is filled with 20 neutrons. The valence states jHF i� and
jHF i� has the 0f7=2 state full with 8 protons and 8 neutrons.
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0f7/2

1p3/2

0f5/2

1p1/2

ν

1p3/2

0f7/2

1p1/2

0f5/2

π

20 proton core 20 neutron core

56Ni

Figure 7: Valence shells jHF i state for 56Ni. At ground state, only 0f7=2 states are full of protons and
neutrons. The state spacings are proportional to the energy spacings generated by Wood-Saxon potential
in reference [25].

When one proton in the �0f7=2 state of 56Ni captures an electron this causes vacancy in the �0f7=2
state of the daughter 56Co and an extra neutron is formed. Only this transition

�0f7=2 ! �0f5=2;

is allowed by the SP transition matrix which set the selection rule for either Fermi or GT transition, given
in eq.(16) and (17). Thus, the extra neutron must be formed in the �0f5=2 state of 56Co. In another word,
a proton-hole created in the �0f7=2 and a neutron-particle is created in the �0f5=2. This is shown in fig.(8).

The triangular condition �. J 5
2
7
2
/ gives all possible nuclear spin states of 56Co, thusˇ̌̌̌
7

2
�
5

2

ˇ̌̌̌
D 1 � J �

ˇ̌̌̌
7

2
C
5

2

ˇ̌̌̌
D 6:

Henceforth, the nuclear state of 56Co is defined in terms of the ground state of the nuclear state of 56Ni as

ˇ̌
56Co,1C; 2C; 3C; 4C; 6C

˛
D

�
c
�

�0f 5
2

h
�

�0f 7
2

�
1C;2C;3C;4C;5C;6C

ˇ̌
56NiI 0C

˛
: (73)

Since ıJf 0 D 0)MF D 0 in eq.(70), only possible final state for the Gamow-Teller matrix is the 1C state
of 56Co according to eq.(71). Thus the GT SP transition matrix according to eq.(71) is

MGT D
p
3MGT .f 5

2
f 7
2
/ D �

p
3.�4

r
2

7
/ D 3:703; (74)

thus,

BF D 0: (75)
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π
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Figure 8: Valence shells jHF i state for 56Co. A proton hole p�1 is created in the �0f7=2 state (h
�

�0f7=2
)

and a neutron-particle is created in the in the �0f5=2 state (c
�

�0f5=2
). The state spacings are proportional

to the energy spacings generated by Wood-Saxon potential in reference [25].

Make use of eq.(48) into eq.(74) the reduced GT transition matrix is thus,

BGT D g
2
A

3

2Ji C 1
jMGT .f i/j

2
D .1:25/2

3

.2 � 1/C 1
.3:703/2 D 21:43: (76)

Make use of eq.(75) and eq.(76) into eq.(6), we obtain

f0t 1
2
D

�

.BF C BGT /
D
6147

21:43
D 286:84: (77)

Using eq.(11) and eq.(77), we obtain,

log f t D log 286:84 D 2:46; (78)

The experimental value,
.log f t/exp D 4:4: (79)

This is much less than the experimental value log f t D 4:4. An indication for the failure of the particle-
hole theory. According to table (4), the transition is unfavoured allowed, meaning that the single-particle
transition is suppressed during the initial and the final states due to the residual two-body interaction by a
factor 102:46�4:4 D 0:011.

The coupling in the excitationˇ̌
56Co I 1C

˛
D

�
c
�

�of 5
2

h
�

�of 7
2

� ˇ̌
56Ni I 0C

˛
;

is the only way to produce 1Cstate by exciting a proton from 0f 7
2
shell to the 0f 5

2
for neutrons. Therefore,

The discrepancy suggests the need for better configurations consists of two-particle-hole excitations which
play an active part in the low laying states of 56Co.
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3.6. ˇ-decay transitions between two particle-hole states

This configuration is based on the electromagnetic transitions between two arbitrary particle-hole states:ˇ̌
aib
�1
i IJi

˛
!

ˇ̌̌
af b
�1
f IJf

E
;

due to an operator OOL in which the transition amplitude is [26, 27]D
af b
�1
f IJf

ˇ̌̌
OOL

ˇ̌̌
aib
�1
i IJi

E
D .�1/

jaiCjbf OJi OJf �2664 ıbibf .�1/
JiCL

�
Ji Jf L

jaf jai jbi

� D
ai

ˇ̌̌
OOL

ˇ̌̌
af

E
C

ıaiaf .�1/
JfCL

�
Ji Jf L

jbf jbi jai

� D
bi

ˇ̌̌
OOL

ˇ̌̌
bf

E
3775 : (80)

Here the a’s and the b’s are replaced by � ’s and �’s.
Starting from even-even reference nucleus .N � Z/, has a particle-hole vacuum state. The excited

states are proton-particle-hole .pp�1/ and neutron-particle-hole .nn�1/ excitations. Consider ˇ�decay of
the adjacent odd-odd .Z C 1; N � 1/ we have .np�1/ excitations. Let as define ˇ�decay operator Ǒ�LM as

Ǒ�
LM D .

OL/�1
X
pn

hpk ǑL kni
h
c�p Qcn

i
LM

(81)

for L D 0 is Fermi operator and for L D 1 Gamow-Teller operator. Thus ˇ0 D 1 and ˇ1 D � . The transition
amplitude for state j‰i i to

ˇ̌
‰f
˛
is given by˝

‰f
ˇ�L k‰i i D . OL/�1X

pn

hpkˇL kni
˝
‰f
 hc�p Qcni k‰i i : (82)

We have the following different ˇ-decay cases

3.6.1 The initial state is a neutron-particle-proton-hole (nip
�1
i )

The initial nuclear wave function is
j‰i i D

h
c�nih

�
pi

i
JiMi

jHF i : (83)

For the final nuclear wave function we need to consider two sub-cases: either the final state be neutron-
particle-neutron-hole (nf n

0�1
f

) or proton-particle-proton-hole (pf p
0�1
f

).

Neutron-particle-neutron-hole final state (nf n
0�1
f

) Here the final nuclear wave function isˇ̌
‰f
˛
D

�
c�nf h

�

n0
f

�
JfMf

jHF i : (84)

Make use into ( 83) (84) into ( 82 ) use Wigner-Eckart theoremD
nf n

0�1
f IJf

ˇ�Lnip�1i IJi E D ınf ni .�1/
jniCjn0f

CJfC1
OJi OJf OL �(

Ji Jf L

jn0
f

jpi jni

)
ML.pin

0
f /: (85)

Note that n0
f

represents neutron hole n�1. ML. pin
0

f
/ is either the Fermi .L D 0/ or the Gamow-Teller

.L D 1/ single-particle matrix element given in 14 and 15, respectively.

M0.ab/ DMF .ab/ D ha kˇ0k bi D ha k1k bi ; (86)

M1.ab/ DMGT .ab/ D
1
p
3
ha kˇ1k bi D

1
p
3
ha k�k bi : (87)

In the single-particle matrix element ML proton and neutrons labels are no longer distinct.
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Proton-particle-proton-hole final state (pf p
0�1
f

) The final wave function

ˇ̌
‰f
˛
D

�
c�pf h

�

p0
f

�
JfMf

jHF i : (88)

Make use into eq (82), we obtainD
p
f
p0�1f IJf

ˇ�Lnip�1i IJi E D ıpip0f
.�1/

jniCjp0f
CJiCL

OJi OJf OL ��
Ji Jf L

jpf jni jpi

�
ML.nipf /: (89)

For ˇCdecay, initial state odd-odd .Z C 1;N � 1/ nucleus generated by proton- particle-neutron-hole
.pn�1/ excitation of .N;Z/ particle-hole vacuum. The final state is particle-hole excitation, which obeys
the charge conservation condition, for the even-even reference nucleus .Z;N /. In similar argument to eq
(81), the decay operator is:

ˇC�LM D
X
pn

hnkˇL kpi
h
c�n Qcp

i
LM

: (90)

Thus the transition amplitude is similar to eq.(82), which reads as˝
‰f
ˇC�L k‰i i D . OL/

�1
X
pn

hnkˇL kpi
˝
‰f
 hc�n Qcpi k‰i i : (91)

3.6.2 The initial state is a proton-particle-neutron-hole state (pin
�1
i )

In this case, the initial nuclear wave function is

j‰i i D
h
c�pih

�
ni

i
JiMi

jHF i : (92)

Again, to obtain the final nuclear wave function we need to consider two sub-cases: either the final state be
neutron-particle-neutron-hole (nf n

0�1
f

) or proton-particle-proton-hole (pf p
0�1
f

).

Neutron-particle-neutron-hole final state (nf n
0�1
f

) In this case, the final nuclear wave function be-
comes ˇ̌

‰f
˛
D

�
c�nf h

�

n0
f

�
JfMf

jHF i : (93)

The transition amplitude becomesD
nf n

0�1
f IJf

ˇCL pin�1i IJi E D ınin0f
.�1/

jpiCjn0f
CJiCL

OJi OJf OL ��
Ji Jf L

jnf jpi jni

�
ML.pini /: (94)

Proton-particle-proton-hole final state (pf p
0�1
f

) The final nuclear wave function is

ˇ̌
‰f
˛
D

�
c�pf h

�
p0
f

�
JfMf

jHF i : (95)

The transition amplitude becomes:�
pf p

0�1
f IJf

ˇCL pin�1i IJi� D ıpipf .�1/
jpiCjp0f

CJfC1
OJi OJf OL �(

Ji Jf L

jp0
f

jni jpi

)
ML.nip

0
f /: (96)
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The allowed transitions for Fermi .L D 0/ decay types, in eqs.(85), (89), (94), and (96), can be written as
[14] �

nf n
0�1
f IJf

ˇ�F nip�1i IJi� D ınf ni .�1/
jniCjn0f

CJfC1
OJi OJf

(
Ji Jf 0

jn0
f

jpi jni

)
ML.pin

0
f /

D �ınf ni ıJiJf ıpin0f
OJi�.jni jn0f

Ji /; (97)

�
p
f
p0�1
f
IJf

ˇ�F nip�1i IJi� D ıpip0f
.�1/

jniCjp0f
CJi
OJi OJf

�
Ji Jf 0

jpf jni jpi

�
ML.nipf /;

D ıpip0f
ıJiJf ınipf

OJi�.jpi jpf Ji /: (98)

�
nf n

0�1
f IJf

ˇCF pin�1i IJi� D ınin0f
.�1/

jpiCjn0f
CJi
OJi OJf

�
Ji Jf 0

jnf jpi jni

�
ML.pini /;

D ınin0f
ıJiJf ıpini

OJi�.jni jnf Ji /: (99)

�
pf p

0�1
f IJf

ˇCF pin�1i IJi� D ıpipf .�1/
jpiCjp0f

CJfC1
OJi OJf

(
Ji Jf 0

jp0
f

jni jpi

)
ML.nip

0
f /;

D �ıpipf ıJiJf ınip0f
OJi�.jpi jp0f

Ji /: (100)

Here Oj D
p
2j C 1, and ıpn indicates that the quantum numbers of the proton and neutron orbitals have

to be the same. The symbol �.j1j2 j / denotes the triangular condition

jj1 � j2j � j � jj1 C j2j : (101)

3.7. Calculating ˇ�-decay strength f t for 16N

The ˇ-decay equation is
16
7N9!

16
8O8C ˇ

�
C N�e; (102)

We can calculate the Q-vlaue
Qˇ� D 10:419 MeV: (103)

The allowed transition,

1. �0p 1
2
! �op 1

2
� .�0p 1

2
/�1.�0d 5

2
/

2. �0d 5
2
! �op 1

2
� 0C

3. �0d 5
2
! �od 5

2
� .�0d 5

2
/.�0p 1

2
/�1

4. �0p 1
2
! �op 1

2
& .�0d 5

2
/! .�1s 1

2
/� �1s 1

2
.�0p 1

2
/�1

5. �0d 5
2
! �1s 1

2
) .�1s 1

2
/.�0p 1

2
/�1

Note that: the selection rule prohibits transition among d -states. There is no transition from 0p 1
2
!

1s 1
2
because the Q-value of the decay is smaller than the energy gap.

The initial state is neutron-particle-proton hole (nip
�1
i ) in eq.(83). Let the final state be a neutron-

particle-neutron hole or proton-particle-proton hole this,

‰f D c
�
�h
�
� jHF i D

ˇ̌̌
pf p

�1
f

E
or ‰f D c

�
�h
�
� jHF i D

ˇ̌̌
nf n

�1
f

E
: (104)

Let us take the transitions one by one:
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1- �0p 1
2
! .�0p 1

2
/� �0d 5

2
.�0p 1

2
/�1: Using the SP states shown in fig.(9), this transition is energy

absorbing transition �E D �4 MeV. Using eq.(85), the Gamow-Teller decay amplitude becomesD
�0d 5

2
.�0p 1

2
/�1IJf

B�GT  �0d 5
2
.�0p 1

2
/�1 W 2�

E
D .�1/

5
2
C 1
2
CJf C1 OJf �

p
2 � 1C 1

p
2 � 1C 1

�
2 Jf 1
1
2

1
2

5
2

�
ML.0p 1

2
! 0p 1

2
/; (105)

D .�1/Jf
p
15 OJf

�
2 Jf 1
1
2

1
2

5
2

�
.�

p
2

3
/;

D .�1/JfC1

r
10

3
OJf

�
2 Jf 1
1
2

1
2

5
2

�
;

D A1.Jf /: (106)

The possible values of Jf can be obtained using the triangular condition

.
5

2

1

2
Jf /) Jf D f1; 2; 3g :

The Jf D 1 amplitude returns null because of the 6j -symbol in eq.(105). Only Jf D f2; 3g are allowed.
Thus �

�0d 5
2
.�0p 1

2
/�1IJf

ˇ�GT  �0d 5
2
.�0p 1

2
/�1 W 2�

�
D A1.Jf /: (107)

Performing the calculation we find

A1.2/ D 0:608581 and A1.3/ D 1:13855:

For Fermi transition, we must have Jf D Ji according to the selection rule. Thus the Fermi decay amplitude
becomes �

�0d 5
2
.�0p 1

2
/�1I 2�

ˇ�F  �0d 5
2
.�0p 1

2
/�1 W 2�

�
D �
p
5 (108)

2- �0d 5
2
! .�0d 5

2
/ ) �0d 5

2
.�0p

1
2

/�1 : This is energy absorbing transition �E D �3:5 MeV. Using

eq.(89), the GT decay amplitude becomes,D
�0d 5

2
.�0p 1

2
/�1IJf kBGT k �0d 5

2
.�0p 1

2
/�1I 2�

E
D .�1/

5
2
C 1
2
C2C1

OJf �

p
2 � 2C 1

p
2 � 1C 1

�
2 Jf 1
5
2

5
2

1
2

�
ML.d 5

2
! d 5

2
/; (109)

D
p
42 OJf ��
2 Jf 1
5
2

5
2

1
2

�
;

D A2.Jf /: (110)

For Fermi transition, we must have Jf D Ji according to the selection rule. Thus the Fermi decay amplitude
becomes D

�0d 5
2
.�0p 1

2
/�1I 2�

ˇ�F  �0d 5
2
.�0p 1

2
/�1I 2�

E
D C
p
5 (111)

3- The transition �0d 5
2
! �0p

1
2

) 0C : yields
D
HF I 0C kˇGT k �0d 5

2
.�0p 1

2
/�1 W 2�

E
is not explainable

using particle-hole theory.
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4- �0p 1
2
! �0p 1

2
and �0d 1

2
! �1s 1

2
) �1s 1

2
.�0p 1

2
/�1: Using eq.(85) the GT decay amplitude becomes,

D
�1s 1

2
.�0p 1

2
/�1IJf kˇGT k �0d 5

2
.�0p 1

2
/�1I 2

E
D 0; (112)

because neutron final particle .�1s 1
2
/ does not match the neutron in initial particle .�0d 5

2
/.

5- �0d 5
2
! �1s 1

2
) .�1s 1

2
/.�0p 1

2
/�1: Using eq.(89), for GT transition, the GT decay amplitude becomes

D
�1s 1

2
.�0p 1

2
/�1IJf kˇGT k �0d 5

2
.�0p 1

2
/�1I 2

E
D 0; (113)

because initial and final orbital angular momenta do not match.

Using eq.(107) and eq.(110),

h2�jˇGT
ˇ̌
2�gs

˛
D

A1.2/C A2.2/
p
2

D
0:608581C 2:55604

p
2

D 2:23772; (114)

h3�jˇGT
ˇ̌
2�gs

˛
D

A1.3/C A2.3/
p
2

D
.1:13855C 0:57735/

p
2

D 1:28812:

Make use eq.(114) and eq.(9), obtain

BGT
˝
2�gs ! 2�

˛
D

g2A
2Ji C 1

ˇ̌
h2�jˇGT

ˇ̌
2�gs

˛ˇ̌2
D 1:56481; (115)

BGT
˝
2�gs ! 3�

˛
D

g2A
2Ji C 1

ˇ̌
h3�jˇGT

ˇ̌
2�gs

˛ˇ̌2
D 0:518517:

Make use eq.(115) into eq.(6),eq.(11), we obtain,

log f t.2�gs ! 2�/ D 3:59 exp 4:3; (116)

log f t.2�gs ! 3/ D 4:074 exp 4:5:

3.8. Calculating ˇC/EC decay strength function f t for 40Sc

The ˇC= EC equation is
40
21Sc19C e

�
!

40
20Ca20C �e: (117)

the calculated Q-vlaue is

QEC D 14:320 MeV: (118)

According to the SP states of 40Ca shown in fig.(10) and using eq.(92) initial nuclear state,

j‰i i D
ˇ̌
pin
�1
i

˛
D

ˇ̌̌
�0f 7

2
.�0d 3

2
/�1

E
; (119)

whereas the final nuclear stateˇ̌
‰f
˛
D c��h

�
� jHF i D

ˇ̌̌
pf p

�1
f

E
or ‰f D c

�
�h
�
� jHF i D

ˇ̌̌
nf n

�1
f

E
: (120)

We have the following possible SP transitions:
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Figure 9: Single-particle energies of 16O calculated by the relativistic Brueckner-Hartree-Fock (RBHF)
theory using the interactions Bonn A, B, and C [28], in comparison with experimental data in [29].
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3Jf ��
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/ OJf

�
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3
2

7
2

�
D A1.Jf /:

Only Jf D f3; 4; 5g are allowed. A1.3/ D �1:54919, A1.4/ D �1:07331, and A1.5/ D 1:3594. Make use of
eq.(121) into eq.(9), we obtain

BGT .4
�
! 3/ D

g2A
2Ji C 1

jh
�4jBGT j3ij

2

D
.1:25/2

2 � 4C 1
.�1:54919/2 D 0:416665 (122)

BGT .4
�
! 4/ D

g2A
2Ji C 1

jh
�4jBGT j4ij

2
D 0:199999 (123)
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For the Fermi transition, the Fermi decay amplitude becomes,D
�0f 7

2
.�0d 3

2
/�1IJf

ˇCL �0f 72 .�0d 32 /�1I 4E D .�1/
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M0.0d 3

2
! 0d 3

2
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D 9.�1/4
�
4 Jf 0
3
2

3
2

7
2

�
.2/

D �3:

Only Jf D 4 contributes to the amplitude (124)

h4� jˇF j 4i D �3:

Using eq.(124) into eq.(8)

BF D
.1:0/2

2 � 4C 1
.�3/2 D 1: (125)

Make use of eq.(121) into eq.(9), we obtain

BGT .4
�
! 5/ D

g2A
2Ji C 1

jh
�4jˇGT j5ij

2
D 0:320828: (126)

Make use eq.(122) and eq.(123) and eq.(125) and eq. (126)into eq.(6) ,and eq.(11), we obtain, log f t
.4� ! 3/ D 4:16 experimental value is 4.8

log f t .4� ! 4/ D 3:70 experimental value is 4.6
log f t .4� ! 5/ D 4:28 experimental value is 4.7.

2- �0d 5
2
.�12:0 MeV/ ! �0d 3
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2
/�1: Thus �E D 2:2 MeV Using eq.(96),

the Gamow-Teller decay amplitude becomesD
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D .1/JfC1.�12
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4 Jf 1
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2
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2

7
2

�
;

D A2.Jf /

only Jf D f3; 4; 5g, are allowed A2.3/ D 1:34164 and A2.4/ D 2:66983 and A2.5/ D 3:55978. Use eq.(127)
and eq.(9) we get

BGT .4
�
! 3/ D

g2A
2Ji C 1

jh
�4jBGT j3ij

2
D

.1:25/2

2 � 4C 1
.1:34164/2 D 0:3125; (128)

BGT .4
�
! 4/ D

g2A
2Ji C 1

jh
�4jBGT j4ij

2
D

.1:25/2

2 � 4C 1
.2:66983/2 D 1:2375; (129)

BGT .4
�
! 5/ D

g2A
2Ji C 1

jh
�4jBGT j5ij

2
D

.1:25/2

2 � 4C 1
.3:55978/2 D 2:20001: (130)

The Fermi transition is zero for this transition for any value of Jf . Use eq.(128), eq.(129), and eq. (130)
into eq.(6) and eq.(11) , we obtain,

log f t.4� ! 3/ D 4:29 experimental value 5.1
log f t.4� ! 4/ D 3:69 experimental value 3.3
log f t.4� ! 5/ D 3:44 experimental value 4.7 (doesn’t exist experimentally for such energy range).
Complete results are shown in table (6).
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Figure 10: Single-particle energies of 40Ca calculated by Hartree-Fock (RBHF) theory using the interactions
AV18 [30], in comparison with experimental data from [31].
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Table 6: The calculated strength function log f t compared with the experimental values for the 40Sc to
40Ca ˇC/EC.

Transition log f t energy (MeV) Isospin T log.f t/exp

jh4�jˇGT j3ij 4:16 3:73 0 4:8

jh4�jˇGT j4ij 3:70 5:61 0 4:6

jh4�jˇGT j5ij 4:28 4:49 0 4:7

jh4�jˇGT j3ij 4:29 6:58 5:1

jh4�jˇGT j4ij 3:69 7:65 1 3:3

jh4�jˇGT j5ij 4:44 4:49 0 4:7

4. Conlusion

We summarize the results of log.f t/ calculated using particle-hole theory in table (7) for 16Ni decay and
table (8) for 40Sc EC.

Table 7: Summary of the calculated ˇ�-decay logarithm of the strength function log f t for all allowed
transitions, using particle-hole theory for the decay 16N!16OCe� C N�e which has Qˇ D 10:419 MeV. The
temperature calculation is based on the hot Thomas-Fermi model [32].

Single Particle SP Nuclear Nuclear Isospin log f t log f t Temperature gA(exp)
Transition transition transition state T Theory exp (MeV) [32]

(MeV) (MeV)

�0p 1
2
! �0p 1

2

�0d 5
2
.�0p 1

2
/�1 -4 h2�jˇGT j2

�i 8.87 0 3.59 4.3 1.8347 0.55464

�0d 5
2
! �0d 5

2

�0d 5
2
.�0p

1
2

/�1 -3.5 h3�jˇGT j2
�i 6.13 0 4.074 4.5 1.5135 0.76535

We utilize the one-particle-hole theory to calculate the half-lives of odd-even nuclei of 15O, 17F, 39Ca,
and 41Sc. By comparing the calculated values with the experimental data we found discrepancies ranging
from 27.4% for 39Ca to 41.4% for 17F. The experimental half-lives always exceed those of the theoretical
values. This is attributed to the fact that the one-particle-hole theory is dependent on the SP states and
doesn’t account for the residual force among the even valence nucleons. This suppresses the SP transitions
in the initial and final nuclear wave functions ‰i and ‰f . The simplicity of this model makes it a favorable
technique to obtain a rough estimate for the half-lives of the ˇ-decays

In the two-particle-hole scheme, we calculate the strength function log f t of the ˇC/EC decay of the
even-even nucleus 56Ni. The value is log f t D 2:46. The experimental value is 4.4 which exceeds the
calculated value log f t D 4:4. A 44.1% discrepancy is an indication of the failure of the particle-hole theory.
Again, as shown in table (4), the transition is unfavoured allowed, meaning that the single-particle transition
is suppressed during the initial and the final states due to the residual two-body interaction.

For odd-odd nuclei, 16N and 40Sc, the results take different turn. Except for �0d 5
2
! �0d 3

2
transition,

corresponds to h4�jˇGT j4
�i amplitude, for the 40Sc, all experimental values of the strength functions are

less than those of the experimental ones. The effect of the NN residual force is diluted for the odd-odd
nuclei. The discrepancies here are merely due to the error in determining the exact energy levels of the SP
states. The theory is a success in this situation.
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Table 8: Summary of the calculated ˇC=EC -decay logarithm of the strength function log f t for all allowed
transitions, using particle-hole theory for the decay 40ScCe� !40CaC�e which has QEC D 14:32 MeV.
The temperature calculation is based on the hot Thomas-Fermi model [32].

Single Particle SP Nuclear Nuclear Isospin log f t log f t Temperature gA(exp)
Transition transition transition state T Theory exp (MeV) [32]

(MeV) (MeV)

�0d 3
2
! �0d 3

2

�0f 7
2
.�0d 3

2
/�1 8 h3�jˇGT j4

�i 3.73 0 4.16 4.8 0.847 0.604433

�0d 5
2
! �0d 3

2

�0f 7
2
.�0d 5

2
/�1 2.2 h3�jˇGT j4

�i 6.58 ? 4.29 5.1 1.090 0.494102

�0d 3
2
! �0d 3

2

�0f 7
2
.�0d 3

2
/�1 8 h4�jˇGT j4

�i 5.61 0 3.70 4.6 1.013 1.09832

�0d 5
2
! �0d 3

2

�0f 7
2
.�0d 5

2
/�1 2.2 h4�jˇGT j4

�i 7.65 1 3.69 3.3 1.169 1.97228

�0d 3
2
! �0d 3

2

�0f 7
2
.�0d 3

2
/�1 8 h5�jˇGT j4

�i 4.49 0 4.28 4.7 0.918 0.772868

�0d 5
2
! �0d 3

2

�0f 7
2
.�0d 5

2
/�1 2.2 h5�jˇGT j4

�i 4.49 0 4.44 4.7 0.918 0.295141

The temperature-dependent of the log f t is shown in fig.(11). The general trend is that the value of
logf t is slowly decreasing with temperature. The fluctuations in the values reflect the dependent on the
shell configurations used to compute the amplitude. The amplitude h3�jˇGT j2

�i for 16N and h5�jˇGT j4
�i

for 40Sc have the closer values to the experimental ones. The drop of the log f t value for h4�jˇGT j4
�i

amplitude is attributed to the fact that Gamow-Teller transition is more likely to occur for �J D 0.
We need to go more steps further and use two-particle-two-hole configurations to “quench” the Gamow-

Teller strengths [33] and implement quasi-particle random phase approximation [34] for more accurate
computations.
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Figure 11: The temperature-dependent of the theoretical and experimental strength function log f t for 40Sc
and 16N (see colored legends).
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