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Abstract 

Thermoelastic vibrations of a nonlocal nanobeam lying on a two-parameter basis and 

subjected to a transverse moving load are introduced in the current study. For the linear 

Winkler-Pasternak foundation type, governing equations are established on the basis of 

the generalized dual-phase-lag heat conduction and nonlocal beams theories. Ramp-type 

changing heat is applied to the nanobeam. The Laplace transform approach is used to 

define and solve the problem's linked equations. A graphic is used to illustrate and 

discuss how the nonlocal parameter and several foundation parameters affect the field 

variables. The results are in line with previous analytical and numerical findings. 
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1. Introduction 

The production of sophisticated materials at the nanoscale, which opens up a new class of 
structures with novel features and better performance devices, is the focus of nanotechnology. 
Due to their many potential uses as nanowires, nanoprobes, atomic power supplies, nano-
actuators, and nano-sensors, among these nanostructures, nanobeams get more attention. 
Additionally, nanoscale effects have a key role in how well nanostructures with tiny diameters 
and spacing between molecules function mechanically. Many academics were motivated by this 
to develop a novel model to forecast the way that these nanostructures behave mechanically. 
There have been more studies on nonlocal theoretical models recently, including several forms 
of nonlocal elasticity techniques that include deeply researched hardening and softening models. 
Due to its universality and simplicity, Micro/nano-scale mechanical systems are simulated using 
the theory of nonlocal elasticity (NET). Eringen was the first to present this notion [1-3]. The 
strain field at each point along a continuum object is, in accordance with the NET theory is a 
function of the stress field at any particular location along the body. The nonlocal elasticity 
theory (NET) has been widely employed in research to account for Nanobeams and 
nanostructures are affected by vibration at the nanoscale. They can be found in references [4–
14] in some cases.  The design of airplane structures often includes nanobeams sitting on elastic 
foundations, which are widely used in structural analysis. Many scientists were motivated by 
this to investigate how constructions performed on various types of elastic foundations. The 
Winkler-type elastic foundation is thought to consist of a collection of vertical, linear elastic 
springs that are precisely spaced apart from one another. Transverse shear deformation and 
Winkler-type elastic springs make up the two parameters of the Pasternak model. Several 
authors [15-21] have investigated the effect of Winkler and Pasternak elastic foundations on the 
bending and vibration of micro-nanomaterials. The moving loads, on the other hand, have a big 
impact on how the engineered structure behaves dynamically. As moving forces (loads) in the 
form of automobile traffic exert pressure on the framework structures used in transport 
engineering, such as bridges, this causes vibration in the structures. Deflections and strains 
brought on by a moving vehicle on a bridge are often larger than those brought on by the same 
vehicle loads applied statically. There is a wealth of literature on the subject of dynamic analysis 
of a structure subject to a moving load. 

Throughout the present research, we use Eringen's nonlocal elasticity and Tzou's 
thermoelastic dual-phase-lag model [22–24], which modifies the Fourier law, to examine the 
thermoelastic vibration of a nanobeam exposed to transverse moving load and resting on 
Winkler–Pasternak foundation. The nanobeam is thermally loaded by ramp-type shifting heat. A 
nanobeam exposed to ramp-type shifting heat is studied for its thermoelastic vibration in terms 
of temperature, deflection, displacement, and bending moment. Several comparisons were 
represented graphically to assess the effects of the nonlocal parameter and Winkler-Pasternak 
foundation parameters on all the field variables. 
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2. Materials and Methods:  

    2. The nonlocal thermoelasticity with phase lags 

The differential nonlocal constitutive equations for a homogeneous thermoelastic material are given 

 by Eringen's nonlocal elasticity theory [1-3] 

(1 − 𝜉∇ଶ)𝜎௜௝ = 𝜏௜௝ ,  (1) 

where 𝜏௜௝  and 𝜎௜௝  represent both of the local and nonlocal stress tensors, respectively. 

According to Tzou model [22-24], the generalized heat equation with a two-phase delay is as 
follows: 

𝐾 ቀ1 + 𝜏ఏ
డ

డ௧
ቁ ∇ଶθ = ቀ1 + 𝜏௤

డ

డ௧
+

ఛ೜
మ

ଶ!

డమ

డ௧మ
ቁ ቂ𝜌𝐶ா

డఏ

డ௧
+ 𝛾𝑇଴

డ

డ௧
൫div(𝒖)൯ − 𝑄ቃ. (2) 

The constitutive equations: 

𝜏௜௝ = 2𝜇𝑒௜௝ + 𝜆𝑒௜௝ − 𝛾𝜃𝛿௜௝ .  (3) 

And, the equation of motion: 

𝜎௝௜,௝ + 𝐹௜ = 𝜌�̈�௜.   (4) 

           By substituting 𝜉 for zero in equation (1), we can readily construct the constitutive 
equation of classical local thermoelasticity, In this case, we ignored the intrinsic feature of 
length, which means that the particles of the medium are scattered in a continuous distribution. 

     3. The Problem's Formulation  

           Suppose a thermoelastic nanobeam such that its dimensions are 𝟎 ≤ 𝐱 ≤ 𝐋, 𝟎 ≤ 𝐲 ≤ 𝐛 and 
𝟎 ≤ 𝐳 ≤ 𝐡 where 𝐋, 𝐛 and 𝐡 represent the nanobeam's length, width and thickness. As shown in Fig. 
1, the initial temperature of nanobeam is 𝐓𝟎 and it rests on a linear Winkler-Pasternak foundation, 
𝐊𝐰 and 𝐊𝐬. In addition, we assume that the axial direction of the beam in this problem is 𝐱 axis. 

                           

                    Fig. 1: Nanobeam schematic on the Pasternak foundation. 

      The displacement field at any arbitrary point of the beam can be taken as below: 
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𝑢 = −𝑧
డ௪

డ௫
, 𝑣 = 0, 𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡).  (5) 

     Relying on the previous assumption of displacement, we can derive the differential  
constitutive Eq. (3) for a one-dimensional problem by substituting these displacements into each 
of the Eqs. (1) and (5) to take the following form [8, 25]: 

𝜎௫௫ − 𝜉
డమఙೣ

డ௫మ
= −𝐸 ቂ𝑧

డమ௪

డ௫మ
+ 𝛼்𝜃ቃ,  (6) 

       where 𝜎௫௫ refers to the nonlocal axial stress, and 𝛼் = 𝛼௧/(1 − 2𝜈).   

 

    The equilibrium equation for microbeam transverse vibration is expressed as 

డమெ

డ௫మ
− 𝜌𝐴

డమ௪

డ௧మ
= 0,  (7) 

    where 𝐴 = 𝑏ℎ, refers to the cross-section area. 
 
                 Winkler's elastic foundation model is the most introductory, as it assumes that at any 
arbitrary point, the vertical displacement is proportional to the contact pressure[26]. The normal 
stress per unit area 𝑅௙ (the reaction of the foundation) and vertical displacement 𝑤 at any point 

along the lower boundary of the nanobeam retain the following relationship as a result of the 
interaction between the nanobeam and the supporting foundation [27, 28] 

𝑅௙ = 𝐾௪𝑤(𝑥, 𝑡) − 𝐾௦
డమ௪(௫,௧)

డ௫మ
,  (8) 

              where 𝐾୵  and 𝐾ୱ stand for the Winkler’s foundation constant, it is also referres to the 
modulus of substrate response, and the shear basis modulus respecitively. 

In the case of putting 𝐾ୱ = 0 in Eq. (8) we will get the relation in case of nanobeam on a 
Winkler foundation type; however, in the case of obtaining a nanobeam that has no foundation 
both of 𝐾୵ = 𝐾ୱ = 0 is substituted 
The transverse vibrational equation of motion for nanobeams is expressed as 

డమெ

డ௫మ
− 𝑅௙ = 𝜌𝐴

డమ௪

డ௧మ
− 𝑞(𝑥).  (9) 

 

The flexure moment is determined using Eq. (6) and is given by 

𝑀(𝑥, 𝑡) − 𝜉
డమெ

డ௫మ
= −𝐼𝐸 ቂ

డమ௪

డ௫మ
+ 𝛼்𝑀்ቃ,  (10) 

where  

𝑀் =
ଵଶ

௛య ∫ 𝜃(𝑥, 𝑧, 𝑡)𝑧𝑑𝑧
௛/ଶ

ି௛/ଶ
.  (11) 

Additionally, it is clearly demonstrated that the nonlocal nanobeams' flexure moment is generate
d by  
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𝑀(𝑥, 𝑡) = 𝜉𝐴𝜌
డమ௪

డ௧మ
+ 𝜉𝐾௪𝑤(𝑥, 𝑡) − (𝐼𝐸 + 𝜉𝐾௦)

డమ௪(௫,௧)

డ௫మ
− 𝛼௧௧𝑀் − 𝜉𝑞(𝑥),  (12) 

where  𝛼௧௧ = 𝐼𝐸𝛼௧ . 

One may obtain the motion equation of the nanobeam by substituting Eq. (12) into Eq. (9) 

డర௪

డ௫ర
− 𝛽ଵ

డమ௪

డ௫మ
+ 𝛽ଶ

డమ

డ௧మ
ቀw − 𝜉

డమ௪

డ௫మ
ቁ + 𝛽ଷ𝑤 + 𝛽ସ

డమெ೅

డ௫మ
+ 𝛽ହ ቀ𝜉

డమ

డ௫మ
− 1ቁ 𝑞(𝑥) = 0,  (13) 

 where 

            𝛽ଵ =
క௄ೢା௄ೞ

ூாାక௄ೞ
,     𝛽ଶ =

ఘ஺

ூாାక ೞ
 ,   𝛽ଷ =

௄ೢ

ூாାక௄ೞ
,   𝛽ସ =  

ఈ೟೟

ூாାక ೞ
 , 𝛽ହ =  

ଵ

ூாାక௄ೞ
  .  (14) 

Substituting Eq. (5) into Eq. (2), gives the generalized heat conduction equation without the heat 
source (𝑄 = 0), as 

ቀ1 + 𝜏ఏ
డ

డ௧
ቁ ቀ

డమ஘

డ௫మ
+

డమ஘

డ௭మ
ቁ = ቀ1 + 𝜏௤

డ

డ௧
+

ఛ೜
మ

ଶ!

డమ

డ௧మ
ቁ ቂ

ఘ஼ಶ

௄

డ஘

డ௧
−

ఊ బ்

୏
𝑧

డ

డ௧
ቀ

డమ௪

డ௫మ
ቁቃ.  (15) 

4. The technique of the solution 

                  We assume that the nanobeam has thermal insulation, thus 𝜕𝜃/𝜕𝑧 at the upper and 
bottom surfaces of the nanobeam (𝑧 = ±ℎ/2) should have no effect at all. Additionally, we 
consider the increment temperature to vary in a sinusoidal fashion along the direction thickness 
as 

                   𝜃(𝑥, 𝑧, 𝑡) = Θ(𝑥, 𝑡) sin ቀ
గ௭

௛
ቁ .                                                             (16) 

When Eq. (16) is substituted into Eq. (13), the motion equation of the nanobeams is obtained as 

          ( డర

డ௫ర − 𝛽ଵ
డమ

డ௫మ + 𝛽ଶ
డమ

డ௧మ ቀ1 − 𝜉
డమ

డ௫మቁ + 𝛽ଷ)𝑤 +
ଶସఉర

௛గమ

డమ஀

డ௫మ + 𝛽ହ ቀ𝜉
డమ

డ௫మ − 1ቁ 𝑞(𝑥, 𝑡) = 0.  (17) 

The flexure moment can also be derived using Eqs. (12) and (16) as 

 𝑀(𝑥, 𝑡) = 𝜉𝐴𝜌
డమ௪

డ௧మ
+ 𝜉𝐾௪𝑤(𝑥, 𝑡) − (𝐼𝐸 + 𝜉𝐾௦)

డమ௪(௫,௧)

డ௫మ
−

ଶସఈ೟

௛గమ
Θ.  (18) 

Now, the generalized thermal conductivity equation can be derived from the Eqs. (15) and (16) 
on the form 

ቀ1 + 𝜏ఏ
డ

డ௧
ቁ ቀ

డమ஀

డ௫మ
−

గమ

௛మ
Θቁ = ቀ1 + 𝜏௤

డ

డ௧
+

ఛ೜
మ

ଶ!

డమ

డ௧మ
ቁ ቂ

ఘ஼ಶ

௄

డ஀

డ௧
−

ఊ బ்గమ௛

ଶସ୏

డ

డ௧
ቀ

డమ௪

డ௫మ
ቁቃ.  (19) 

To enable the numerical analysis more straightforward, dimensionless parameters are introduced
. We'll utilize the following non-dimensional variables 

   

{𝑥ᇱ, 𝑧ᇱ, 𝑢ᇱ, 𝑤ᇱ, ℎᇱ} =
ଵ

୐
{𝑥, 𝑧, 𝑢, 𝑤, ℎ},   ൛𝑡ᇱ, 𝜏′଴, 𝜏′஘, 𝜏′୯ ൟ =

௖బ

୐
൛𝑡, 𝜏଴, 𝜏஘, 𝜏୯ൟ,

𝜉ᇱ =
క

௅మ
,   𝛩ᇱ =

௵

బ்
,   𝑐଴L =

௄

ఘ஼ಶ
,    𝑀ᇱ =

ெ

஺௅ா
, 𝑐଴ = ට

ா

ఘ
, 𝑞ᇱ =

஺

ாூ
𝑞.

 (20) 

Therefore, the essential Eqs. [17-19] in its new versions are  
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డర௪

డ௫ర
− 𝐴ଵ

డమ௪

డ௫మ
+ 𝐴ଶ ቀ

డమ௪

డ௧మ
− 𝜉

డర௪

డ௧మడ௫మ
ቁ + 𝐴ଷ𝑤 = −𝐴ସ

డమ஀

డ௫మ
− 𝐴ହ ቀ𝜉

డమ

డ௫మ
− 1ቁ 𝑞(𝑥), (21) 

𝑀(𝑥, 𝑡) = 𝜉
డమ௪

డ௧మ
+ 𝐴଺𝑤(𝑥, 𝑡) − 𝐴଻

డమ௪(௫,௧)

డ௫మ
− 𝐴଼Θ − 𝐴ଽ𝑞(𝑥), (22) 

ቀ1 + 𝜏ఏ
డ

డ௧
ቁ ቀ

డమ஀

డ௫మ
−

గమ

௛మ
Θቁ = ቀ1 + 𝜏௤

డ

డ௧
+

ఛ೜
మ

ଶ!

డమ

డ௧మ
ቁ ቂ

డ஀

డ௧
−

ఊగమ௛௖బ௅

ଶସ୏

డ

డ௧
ቀ

డమ௪

డ௫మ
ቁቃ , (23)  

where 

                  𝐴ଵ = 𝐿ଶ𝛽ଵ,    𝐴ଶ = 𝐿ଶ𝛽ଶ𝑐଴
ଶ, 𝐴ଷ = 𝐿ସ𝛽ଷ,  𝐴ସ =

ଶସ ర బ்

௛గమ
, 𝐴ହ =

ఉఱ ாூ ௅య

஺
, 

      𝐴଺ =
క௅௄ೢ

஺ா
,       𝐴଻ =

ூாା௅మక௄ೞ

஺ா௅మ
,       𝐴଼ =  

ଶସ బఈ೟೟

஺ா మ௛గమ
,   𝐴ଽ =

క௅୍

஺మ
 .                                      (24 )  

Prime sign have been removed for ease of use. 

 
The external load 𝑞(𝑥, 𝑡) is supposed to be concentrated and moving at a constant speed υ along the 
axis of the beam. The load 𝑞(𝑥, 𝑡) can therefore be represented as  

               𝑞(𝑥, 𝑡) = 𝑄଴𝛿(𝑥 − 𝜐𝑡),                                                                      (25) 
where 𝑄଴ is the strength of load which assumed to be constant and 𝛿(·) is the Dirac function. 
 

5. Boundary/Initial conditions 

                  The boundary and initial conditions must be taken into account in order to get the sol
ution. The initial conditions are assumed to be homogenous as follows 

𝛩(𝑥, 0) =
డ௵(௫,଴)

డ௧
= 0 = 𝑤(𝑥, 0) =

డ୵(௫,଴)

డ௧
.                                                  (26) 

We shall assume that the nanobeam's two endpoints are clamped, i.e. 

         w(0, t) = w(𝐿, t) = 0 =
డమ୵(଴,୲)

డ௫మ
=

డమ୵(௅,୲)

డ௫మ
.                                                    (27) 

In addition, we assume the nanobeam to be thermally loaded by ramp-type heating, which result
s in  

                                             𝛩(𝑥, 𝑡) = 𝛩଴ ቐ

0,                𝑡 < 0,
௧

௧బ
,     0 ≤ 𝑡 ≤ 𝑡଴

1,                 𝑡 > 𝑡଴

 ,                                        (28) 

where 𝛩଴ is a constant and the ramp-type parameter 𝑡଴ is non-negative parameter. Additionally, 
the temperature at the end boundary needs to adhere to the relationship below 

                  
డ௵

డ௫
= 0       on      𝑥 = 𝐿.                                                                            

(29) 
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6. The effects of Laplace transformation 

The Laplace transformation approach may be used to solve the governing and constitutive equat
ions in closed form. By applying the Laplace transformation that is defined in the       following 
form  

 𝑓(̅𝑥, 𝑠) = ∫ 𝑓(𝑥, 𝑡)𝑒ି௦௧𝑑𝑡
ஶ

଴
.  (30) 

on the homogeneous initial conditions (26), and to the both sides of Eqs. (21)-(23), it yields the 
new form of theses equations as following 

 (
ୢర

ୢ௫ర
− 𝐴ଵ଴

ୢమ

ୢ௫మ
+ 𝐴ଵଵ)𝑤ഥ = −𝐴ସ

ୢమ஀ഥ

ୢ௫మ
+ 𝐴ହgത(s)eି

ೞ

ഔ
௫𝑄଴,  (31) 

 𝑀ഥ(𝑥, 𝑡) = 𝐴ଵଶ𝑤ഥ − 𝐴଻
ୢమ௪ഥ

ୢ௫మ
− 𝐴଼Θഥ−𝐴ଵଷgത(s)eି

ೞ

ഔ
௫𝑄଴, (32) 

 ቀ
ୢమ

ୢ௫మ
− 𝐵ଵቁ Θഥ = −𝐵ଶ 

ୢమ௪ഥ

ୢ௫మ
 ,  (33) 

where  

Aଵ଴ = (Aଵ+sଶξAଶ), Aଵଵ = (Aଷ+sଶAଶ), Aଵଶ = (ξsଶ + A଺),  Aଵଷ =
୅వ

ଵିஞ 
౩మ

ಝమ

,

 Aଵସ =
஠మ

୦మ
  Aଵହ =  

ஓ஠మ୦ୡబ୐

ଶସ୏
,      Bଵ =  Aଵସ +

ୱ(ଵାத౧ୱା
భ

మ!
த౧

మୱమ)

ଵାதಐୱ
,   Bଶ =

ୱ୅భఱ(ଵାத౧ୱା
భ

మ!
த౧

మୱమ)

ଵାதಐୱ
.

          (34) 

                                           

The following differential equation for 𝑤ഥ  is obtained by removing the function Θഥ from from 
Eqs. (31) and (33) as 

 (𝐷଺ − 𝐴𝐷ସ + 𝐵𝐷ଶ − 𝐶)𝑤ഥ(𝑥) = Γଵ𝑄଴eି
ೞ

ഔ
௫,                                                             

(35) 

where the coefficients 𝐴, 𝐵 and 𝐶 are given by 

 𝐴 = 𝐴ସ𝐵ଶ + 𝐴ଵ଴ + 𝐵ଵ,    𝐵 = 𝐴ଵଵ + 𝐵ଵ𝐴ଵ଴,   𝐶 = 𝐵ଵ𝐴ଵଵ,   𝐷 =
ௗ

ௗ௫
 ,   (36) 

                          Γଵ = 𝐴ହ ቀ 
ୱమ

ఔమ
− 𝐵ଵቁ �̅�(𝑆). 

Equation (35) can be moderated to 

 (𝐷ଶ − 𝑚ଵ
ଶ)(𝐷ଶ − 𝑚ଶ

ଶ)(𝐷ଶ − 𝑚ଷ
ଶ)𝑤ഥ(𝑥) = Γଵ𝑄଴eି

ೞ

ഔ
௫,  (37) 

where 𝑚௡
ଶ, 𝑛 = 1,2,3 are roots of  the characteristic equation 

      𝑚଺ − 𝐴𝑚ସ + 𝐵𝑚ଶ − 𝐶 = 0.                                                                          (38) 

 
The general solutions of �̄� may be obtained from equation (37) as following 

           𝑤ഥ = ෌ (𝐶௜𝑒ି௠೔௫ + 𝐶௜ାଷ𝑒௠೔௫) + 𝐶଻𝑒ି௦௫/జଷ

௜ୀଵ
.        (39) 
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where  

                          𝐶଻ =
௰భ

(௦ జ⁄ )లି஺(௦ జ⁄ )రା஻(௦ జ⁄ )మି஼
  .                                                          (40) 

 

With likewise eliminating 𝛩ത between (31) and (32), we get at the equation below, which is 
fulfilled by 

                      ቂ ௗల

ௗ௫ల
− 𝐴

ௗర

ௗ௫ర
+ 𝐵

ௗమ

ௗ௫మ
− 𝐶ቃ  Θഥ = 𝛤ଶ𝑄଴𝑒ି

ೞ

ഔ
௫,                                                   

(41) 

where,  
                        𝛤ଶ = −𝑠ଶ𝐴ହ𝐵ଶ�̅�(𝑠)/𝜐ଶ.                                                                                 
(42) 

Eq. (41) generic solutions can be simplified as follows 

             Θഥ = ෌ (𝐹௜𝑒ି௠೔௫ + 𝐹௜ାଷ𝑒௠೔௫) + 𝐶଼𝑒ି௦௫/జଷ

௜ୀଵ
. (43) 

Substituting the functions 𝑤ഥ  and 𝛩 ഥ from Eqs. (39) and (43) into Eq. (33) yields 

            𝐹௜ = 𝛽௜𝐶௜ ,   𝐹௜ାଷ = 𝛽௜𝐶௜ାଷ,     𝛽௜ = −
஻మ௠೔

మ

௠೔
మି஻భ

,   𝐶଼ = −
஻మ௦మ/జమ

௦మ/జమି஻భ
𝐶଻,                 (44) 

So, 

    𝛩ത = 𝛽௜𝑤ഥ = ෌ 𝛽௜(𝐶௜𝑒ି௠೔௫ + 𝐶௜ାଷ𝑒௠೔௫) + 𝐶଼𝑒ି௦௫/జଷ

௜ୀଵ
.                                       (45) 

By the same way we can arrive to the following equation for the bending moment 𝑀ഥ in the 
form 

 𝑀ഥ = ෌ (−𝐴଻𝑚௜
ଶ − 𝐴ଶ𝛽௜ + 𝐴ଵଶ)

ଷ

௜ୀଵ
(𝐶௜𝑒ି௠೔௫ + 𝐶௜ାଷ𝑒௠೔௫) + 𝐶ଽ𝑒ି

ೞ

ഔ
௫, (46) 

where 
 𝐶ଽ = (−(𝑠 𝜐⁄ )ଶ𝐴଻ + 𝐴ଵଶ) 𝐶଻ − 𝐴଼𝐶଼ − 𝐴ଵଷ 𝑄଴�̅�(𝑠). (47) 
Furthermore, the axial displacement after using Eq. (39) has the form 

                𝑢ത = −𝑧
ௗ௪ഥ

ௗ௫
= 𝑧  ቂ෌ 𝑚௜(𝐶௜𝑒ି௠೔௫ + 𝐶௜ାଷ𝑒௠೔௫) + (𝑠 𝜐⁄ )ଶ𝐶଻𝑒ି௦௫/జଷ

௜ୀଵ
ቃ.                    (48) 

Additionally, the strain will be 

 �̅� =
ௗ௨ഥ

ௗ௫
= −𝑧  ቂ෌ 𝑚௜

ଶ(𝐶௜𝑒ି௠೔௫ + 𝐶௜ାଷ𝑒௠೔௫) + (𝑠 𝜐⁄ )ଶ𝐶଻𝑒ି௦௫/జଷ

௜ୀଵ
ቃ. (49) 

In the Laplace transform domain, boundary conditions (26) to (29) reduce to 

�̄�(𝑥, 𝑠)|௫ୀ଴,௅ = 0,
ௗమ ௪ሜ (௫,௦)

ௗ ௫మ
ቚ

௫ୀ଴,௅
= 0,                                                                         (50) 

𝛩ሜ (𝑥, 𝑠)|௫ୀ଴ = 𝜃଴ ቀ
ଵି௘ష೟బೞ

௧బ௦మ
ቁ = 𝐺ሜ (𝑠),                                                                            (51) 

డ௵ሜ

డ௫
= 0, 𝑥 = 𝐿.                                                                                                            (52) 
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The boundary conditions in Eqs. (39) and (45) are satisfied, according to Eqs. (50)- (52). Eqs. 
(37) and (45) are substituted into Eqs. (50)- (52) to provide 

∑ (𝐶௜ + 𝐶௜ାଷ) = −𝐶଻
ଷ
௜ୀଵ ,                                                                                                 (53) 

∑ (𝐶௜𝑒ି௠೔௅ + 𝐶௜ାଷ𝑒௠೔௅) = −𝐶଻𝑒ି௦௅/జଷ
௜ୀଵ ,                                                                   (54) 

∑ 𝑚௜
ଶ(𝐶௜ + 𝐶௜ାଷ) = −𝐶଻𝑠ଶ/𝜐ଶଷ

௜ୀଵ ,                                                                                (55) 

∑ 𝑚௜
ଶ(𝐶௜𝑒௠೔௅ + 𝐶௜ାଷ𝑒௠೔௫)ଷ

௜ୀଵ = −𝐶଻(𝑠ଶ/𝜐ଶ)𝑒ି௦௅/జ,                                                  (56) 
∑ 𝛽௜(𝐶௜ + 𝐶௜ାଷ)ଷ

௜ୀଵ = 𝐺ሜ (𝑠) − 𝐶଼,                                                                                   (57) 
∑ 𝛽௜𝑚௜(−𝐶௜ 𝑒ି௠೔௅ +𝐶௜ାଷ𝑒௠೔௅)ଷ

௜ୀଵ = 𝐶଼(𝑠/𝜐)𝑒ି௦௅/జ.                                                 (58) 
                    
  

The unknown constants 𝐶௜  and 𝐶௜ାଷ may be determined using Eqs. (53)- (58). The lateral 
vibration and temperature may then be calculated using Eqs. (39), (45) and (46). (12). Eq. (48) 
may be used to calculate the displacement, and Eq. (46) can be used to get the bending 
moment. The Laplace transform of the complex solutions for the investigated fields in Laplace 
transform space is challenging to obtain. As a result, in the part that follows, the data will be 
numerically examined using a technique based on the Fourier series expansion approach. 
Software called Mathematica was used to carry out the numerical calculations. 

7. The inverse of Laplace transforms 

Following that, we encounter a large number of lengthy and complex expressions while finding answers 
in the transformed domain; hence, we employ a numerical technique developed by Durbin [29] to 
reverse the direction of Laplace twists to obtain solutions in a physical field. In this approach, the 
inversion solutions may be derived by applying the following formula: 

𝑀(𝑡) = (2Re ෍[𝑀(𝑐ଵ + 𝑖𝑐ଶ) 𝑒ି௜௖మ௧] + 𝑀(𝑐ଵ))

௠

௞ୀଵ

 
𝑒௖భ௧

2𝑡ଵ

, (59) 

𝑐ଶ =
గ௞

௧భ
, 

                where 𝑚 is an integer big enough to signify the truncated parts number in the 
infinite  

                 Fourier series and should be chosen as such 

 

𝑒௖భ௧ 𝑅𝑒(𝑒ି௜గ௠௧/௧భ𝑀(𝑐ଵ + 𝑖𝜋𝑚/𝑡ଵ)) ≤ 𝜖, 
where 𝜖 is a very small positive value matching to the required degree of precision, and 
𝑐ଵ is a real integer larger than the total of the real parts of all the singularities.  
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3. Results and discussion  

                 To demonstrate the dynamic displacement response of an elastic beam to a 
moving load, numerical calculations are made. Silicon (Si), a superb material utilized in 
resonant devices, has been selected as the material for the purpose of numerical analysis. 
The following are the physical material data for silicon: 

𝛼் = 2.59 × 10ି଺𝐾ିଵ, 𝜈 = 0.22, 𝐾 = 156W/(mK), 𝑇଴ = 293𝐾 
𝐸 = 169GPa, 𝜌 = 2330kg/mଷ, 𝐶ா = 713J/(kgK), 
𝑡଴ = 0.1sec, 𝐿/   = 10, 𝑏/   = 0.5, 𝐿 = 1, 𝑧 =   /3. 

                    The change in temperature 𝜃, the deflection 𝑤, and axial displacement 𝑢 
distributions are graphed versus 𝑥 –direction for two cases.  
                   First case is examined to investigate changes in dimensionless lateral deflection 𝑤, 
change in temperature 𝜃, and the displacement 𝑢 with various phases delays where 𝑡଴ = 0.1 
and 𝑣 = 0.22 is presumptive values. The suggested model is used to construct the curves 
predicted by three different thermoelasticity models, which may be seen in figures 2 through 4 
as special states of the two-phase-lag model (DPL). By taking different values of the 
coefficients of the phase lag model (, 𝜏௤ and 𝜏ఏ), we can get different models for the theory of 
thermoelasticity. For example we can obtain the modified Tzou's model by assuming 𝜏௤ =

0.2, 𝜏ఏ = 0.1 , the Lord Shulman model (LS) as 𝜏௤ = 0.2, 𝜏ఏ = 0  and of course by putting 𝜏௤ =

0, 𝜏ఏ = 0  we will get the classical thermoelasticity theory (CTE). The results reveal that phase 
delay effects have a big impact on how physical quantities are distributed. The mechanical 
patterns demonstrate that waves move across the material at a limited speed. It is also clear 
that several theories operate essentially the same manner. Additionally, it is demonstrated 
that when compared to other non-classical models, the CTE model yields greater values for the 
field variables. And due to the unrealistic physical demands of the thermodynamic notion of 
thermoelasticity, a better theory of thermal conductivity has been created. In contrast to the 
conventional theory, the modified theory proposes that thermal waves move at a finite pace. 
                       Fig. 2 depicts the differences in the deflection 𝑤, this diagram illustrates that all 
values of 𝑤 begin and terminate at zero and satisfy the boundary conditions at 𝑥 = 0 and 𝐿. 
The lateral deviation similarly peaks at a specific distance from the left edge and declines as 
the 𝑥- axis increases. 
                      For the change in temperature distribution 𝜃 which is shown in fig. 3, it’s indeed 
obvious that the nonlocal stress appears to have minimal impact on the nanobeam's 
temperature change. The results also demonstrate that the temperature rapidly drops as 𝑥 
becomes farther and farther away from the thermal heat source. Indeed, contrary to what was 
predicted by conventional theories, actual findings have shown that size effects have a 
significant impact on the physical properties and mechanical responses of NEMS at the 
nanoscale at, defying the predictions of general theory [30–32]. 
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                      According to the diagrams of 𝑢 that is shown in fig. 4, it is noticed that all curves 
start at its maximum value and then decreases regularly to intersect the curves with the 𝑥 -axis 
and then take negative values so that the wave rises again to reach zero again and settles at 
this position.  
                     The second case investigates how changes deflection 𝑤, change in temperature 𝜃, 
the displacement 𝑢, and the axial stress 𝜎௫௫ at different axial speeds (𝑣 = 2, 4, and 6) are 
affected by sinusoidal heat pulses. The influence of velocity distribution 𝑣 on the 
thermomechanical behavior of the nanobeams is shown in Figures 5–8. Any changes in the 
traveling speed will have an impact on the field amounts. As the values of axial speed 𝑣 of 
grow, the magnitudes of mechanical waves 𝑤 and 𝑢 decrease. On the other hand, the axial 
speed 𝑣 variations have a relatively small impact on the temperature change 𝜃 and the axial 
stress 𝜎௫௫. 

 
                            Fig. 2. The non-dimension lateral deflection w for various thermoelasticity models 

 
                          Fig. 3. The non-dimension temperature θ for various thermoelasticity models 
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                  Fig. 4. The non-dimension axial displacement 𝑢 for various thermoelasticity models 

 

 
                  Fig. 5. The non-dimension deflection 𝑤 for different values of the velocity 𝑣 

 
                 Fig. 6. The non- dimension temperature 𝜃 for different values of the velocity 𝑣 
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                 Fig. 7. The non-dimension axial displacement 𝑢 for different values of the velocity 𝑣 

 
                    Fig. 8. The non-dimension axial stress 𝜎௫௫ for different values of the velocity 𝑣 

 

 

Conclusion: 

                   The governing equations of nonlocal nanobeams embedded in a two-parameter 
foundation and exposed to transverse moving load are built in the current study using 
extended thermoelasticity with phase lag theories and non-local Euler-Bernoulli beams. The 
two-parameter Pasternak foundation is used to represent the elastic foundation. Additionally, 
the discussion and investigation of the thermoelastic vibration of the temperature, deflection, 
displacement, and bending moment of nanobeam exposed to ramp-type heating. 
                      On all the field variables, the impacts of the nonlocal parameter, elastic coefficient 
of the foundation, and shear layer foundation stiffness parameters have been demonstrated 
and graphically represented. The Pasternak foundation becomes a Winkler foundation if the 
stiffness of the shear layer foundation is disregarded. 
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