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Abstract
The exponential stabilization of fractional-order differential systems is examined through

the utilization of time-triggered impulsive control (TTC). The impulsive control strategy
is characterized by a triggering mechanism, which relies on the states of the systems. Up-
dates to the controller exclusively occur at impulsive moments. Decreasing the frequency
of controller updates leads to a reduction in the utilization of communication bandwidth
and computational resources. Moreover, the effectiveness of the theoretical findings is
demonstrated through a numerical illustration involving simulation on a chaotic frac-
tional order system within the domain of finance.

1 Introduction
Fractional order systems emerges as a versatile mathematical framework with pro-

found implications across numerous domains. Its ability to capture non local, memory-
dependent [1], and anomalous behaviors provides researchers and practitioners with pow-
erful tools to tackle complex real-world problems such as finance [2, 3, 4, 5], engineering
[6], and biological systems [7]. At the same time, Control theory plays a critical role in
managing complex dynamic systems across various fields, including engineering, biology,
and economics. Two primary approaches in control theory are continuous control and
impulsive control. Continuous control involves smooth, ongoing adjustments to a sys-
tem’s parameters to maintain desired behaviors, typically modeled through differential
equations. While this method is well-established and effective in many applications, it
requires constant monitoring and adjustment, which can be computationally expensive
and practically challenging for real-time systems [8, 9, 10, 11].

In contrast, impulsive control involves sudden, discrete changes to the system’s state
at specific moments in time. These impulses can be strategically timed to achieve desired
outcomes with fewer interventions, making impulsive control particularly appealing in



scenario where continuous monitoring is impractical or where sudden, decisive actions are
more effective. Impulsive control has been successfully applied across various domains,
including biological systems, spacecraft trajectory correction, and economic systems [12,
13, 14].

In recent years, there has been growing interest in applying control theory to fractional-
order chaotic financial systems, which are characterized by their non-linearity and mem-
ory effects. These systems are highly sensitive to initial conditions, making them difficult
to control using traditional continuous methods [15]. Fractional calculus, which extends
the concept of integer-order derivatives to non-integer orders, offers a powerful framework
for modeling these complex systems [16, 17, 1, 18]. The use of fractional-order models
provide a more accurate representation of the dynamics within financial systems by cap-
turing long-range dependencies and complex temporal structures that cannot be fully
addressed using integer-order models [19, 20, 21, 22].

Given the chaotic nature of these systems, impulsive control offers distinct advan-
tages over continuous control. The ability to apply targeted, high-impact interventions
at critical moments can help stabilize the system and prevent undesirable outcomes, such
as financial crises. Moreover, impulsive control is more efficient in scenarios where con-
tinuous monitoring is either too costly or unfeasible, making it an attractive option for
managing the inherent volatility of financial markets [20, 21, 22].

In [20], a system of differential equations was proposed to model the interactions
among various factors in a financial system. The system exhibited unpredictable and
chaotic behaviors, highly sensitive to initial conditions, with the time history of the sys-
tem displaying pseudo-random behaviors indicative of chaotic dynamics. The study also
identified complex dynamical behaviors such as period-doubling bifurcations, bifurcation
diagrams demonstrated that chaotic behaviour occurred across a wide range of system pa-
rameters. These findings suggest that the interactions among key factors in the financial
model contribute to the emergence of such dynamics.

In [21], an investigation has been conducted on the dynamics of a financial system
incorporating fractional order and robust chaotic control, employing both analytic and
numerical techniques. A control strategy based on robust fractional-order sliding mode
control has been formulated utilizing Lyapunov stability theory to achieve stability of
chaotic trajectories.

In [22] a synchronization criterion for fractional-order hyper-chaotic financial systems
using impulsive control and state feedback controllers was presented. The authors estab-
lished a global Mittag-Leffler synchronization criterion that allowed a backward economic
system to synchronize asymptotically with an advanced economic system through effec-
tive macroeconomic management.

Motivated by the above discussions, this chapter focuses on the problem of expo-
nential stability for nonlinear fractional-order systems via impulsive control strategy and
its application to chaotic financial systems. Impulsive control in finance can manifest
through mechanisms such as government interventions during economic crises, central
banks adjusting interest rates, sudden market fluctuations due to external shocks, regu-
latory changes affecting financial markets, and efforts to stabilize exchange rates during
currency crises. The rest of the paper is organized as follows. In Section 2, the frac-
tional tools are reviewed. In Section 3, the problem is formulated, the fractional financial
chaotic model is explained, and the main result is proved. In Section 4, The exponential
stability of chaotic financial systems is proved, along with a numerical simulation. The
paper concludes with a conclusion and future work in Section 5.
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2 Mathematical preliminaries
In this section, we review key definitions from stability theory and introduce a chaotic

financial system in the context of impulsive control. In this section, we introduce some
definitions of fractional calculus, recall some important results we’ll be using later, and
introduce our chaotic system to finance.

2.1 Caputo fractional-order derivative

For α ∈ (0, 1) and T ≥ t0 ≥ 0, the Caputo fractional derivatives is defined as follows

cDα
t0
f(t) =

1

Γ(1− q)

∫ t

t0

(t− τ)−αf ′(τ)dτ t0 < t ≤ T. (1)

where Γ(s) =

∫ ∞
t0

ts−1e−tdt, s > 0 denotes the Gamma function and f ′(τ) denotes the

derivative of f at point τ . The one-parameter Mittag-Leffler function is an important
tool in fractional calculus and is defined as follows

Definition 1. [23] For any complex number z and α > 0, we define the complex function

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
. (2)

The function Eα is known as the one-parameter Mittag-Leffler function.

The following proposition gives an important proprite of the one-parameter Mittag-
Leffler function Eα.

Proposition 1. [24] Let α ∈ (0, 1) and t ≥ t0. Then, for all c > 0 the function t →
Eα[c(t−t0)α] is non-negative and it is monotonically non-decreasing and Eα[c(t−t0)α] ≥ 1.

Let α ∈ (0, 1). Consider the Caputo fractional non-linear system
cDα

t0
x(t) = f(t, x(t)); t > t0, (3)
x(t0) = x0, (4)

where x(t) ∈ Rm is the system state, t0 is the initial time, and the function f(t, x) is
piecewise continuous in t, locally Lipschitz in x, with constant L, and satisfies f(t, 0) = 0
for all t ≥ t0.

Definition 2. [25] An element xe ∈ Rm is called an equilibrium point of the Caputo
fractional dynamic system (3)-(4) if f(t, xe) = 0,∀t ≥ t0.

Definition 3. [25] The origin x = 0 of the system (3)-(4) is exponentially stable if there
exist positive constants c, γ and δ such that

‖x(t)‖ ≤ c‖x(t0)‖ e−γ(t−t0), (5)

for all x0 ∈ Bδ := {x ∈ Rm, ‖x‖ < δ} and t ≥ t0.

Proposition 2. [25] Let α ∈ (0, 1), and x = 0 an equilibrium point of the system (3)-(4).
If the function f is Lipschitz continuous with respect to x with Lipschitz constant L and
piecewise continuous with respect to t, then the solution of system (3)-(4) satisfies

‖x(t)‖ ≤ ‖x0‖ Eα
(
L(t− t0)α

)
. (6)
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2.2 Fractional Chaotic System in Finance

Fractional-order derivatives are characterized by their inclusion of a memory compo-
nent, allowing them to account for previous states the system’s analysis. This feature
enhances their effectiveness and accuracy compared to integer-order derivatives when rep-
resenting phenomena influenced by historical data, such as genetic diseases, economics
systems, and financial markets. It is deemed to be the most effective to study the financial
system using a fractional differential equation model, which incorporates interest rates,
investment demand, and price indexes, since it considers the past values of the variables,
which helps clarify how the present financial situation is influenced by past events. In
[21] the following model is proposed:

cDq1
0 x1(t) = gx3 + x1x2 − ax1, (7)

cDq2
0 x2(t) = −bx22 − sx21 + r, (8)

cDq3
0 x3(t) = −cx3 +−βx1 − px2, (9)

where a is the saving rate, b is the investment cost, and c is the elasticity of demand.
The system (7)-(9) is called a commensurate fractional-order system if q1 = q2 = q3 = q;
otherwise, it is considered an incommensurate fractional-order system [26]. The system
(7)-(9) exhibits chaotic behavior when q = 0.83, a = 0.3, b = 0.04, c = 1, r = 1, s =
0.1, p = 0, g = 1.2, β = 1, and initial conditions (1.2, 1.5, 1.6) are considered (see Figures
1 and 2). Let x = (x1, x2, x3)

T , the system (7)-(9) takes the form of system (3)-(4) with
f(t, x) = (gx3 + x1x2 − ax1, r − bx22 − sx21,−cx3 − βx1 − px2)T .

Our next step is to develop a time-triggered impulsive control strategy that guarantees
the exponential convergence of the system (7)-(9).

3 Main result
In this section, we present our main result: the construction of a sequence (tk, u(x(tk))),

where moments tk are carefully selected to influence the state by implementing the value
u(x(tk)) in the state at time tk, resulting in an exponential convergence to zero for system
(3)-(4) under control.

Let N ∈ N, δ positive constant, and 0 < λ < 1. Consider the following set

Ik =
{
i, 1 ≤ i ≤ N, ‖x(tk + iδ)‖ ≥ λ‖x(t+k ‖

}
, (10)

and put ik = min Ik.
The following time-triggered mechanism defines the condition for intervening at time

tk+1 to control the system if tk has already occurred:

E :

{
tk+1 = tk + ikδ, x(t+k+1) = x(tk+1) + u((x(tk+1)), if Ik 6= ∅,
tk+1 = tk +Nδ, x(t+k+1) = x(tk+1), if Ik = ∅.

Now, we can establish our main result concerning the exponential stability of the following
control system:

cDα
t0
x(t) = f(t, x(t)); t 6= tk, k = 1, 2, ... (11)
x(t+k ) = x(tk) + u(x(tk)); (12)
x(t+0 ) = x0. (13)
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Theorem 1. Assume that there exists a positive constant R > 0, and µ ∈ (0, 1) such
that for any x ∈ BR,

‖x+ u(x)‖ ≤ µ‖x‖. (14)

Then, the origin x = 0 of the system (11)-(13), where the sequence (tk, u(x(tk)) is defined
by mechanism E, is exponentially stable.

Proof. According to mechanism E , x(tk) is defined depending on whether tk comes from
the case Ik = ∅ or from the case Ik 6= ∅.

When Ik = ∅, we have:

‖x(t+k+1)|‖ = ‖x(tk+1)‖
≤ λ‖x(t+k )‖. (15)

if Ik 6= ∅, we have:

‖x(t+k+1)‖ = ‖x(tk+1) + u(x(tk+1))‖
≤ µ‖x(tk+1)‖
≤ µ‖x((tk)

+)‖Eα(L(tk+1 − tk)α)

≤ µEα(L(Nδ)α)‖x((tk)
+)‖. (16)

Combining (15), and (16) we obtain for all k ≥ 0:

‖x(t+k+1)|‖ ≤ β‖x((tk)
+)‖, (17)

where β = max{λ, µEα(L(Nδ)α)}.
By induction, we can conclude that for all k ≥ 1:

‖x(t+k )‖ ≤ βk‖x(t+0 )‖. (18)

Now, using Proposition 1, inequalities (6) and (18), we obtain for all t ∈ (tk, tk+1]:

‖x(t)‖ ≤ Eα(L(Nδ)α)βk‖x(t+0 )‖
≤ Eα(L(Nδ)α)ek ln(β)‖x(t+0 )‖. (19)

Furthermore, the construction of the sequence (tk) leads to the conclusion that for t ∈
(tk, tk+1] we have:

0 < t− t0 ≤ (k + 1)Nδ. (20)

this gives:

k ≥ t− t0
Nδ

− 1. (21)

This combined with (19), give us:

‖x(t)‖ ≤ Eα(L(Nδ)α)e
ln(β)
Nδ

(t−t0)e− ln(β)‖x(t+0 )‖
≤ c ‖x(t+0 )‖ e−γ(t−t0), (22)

where c =
1

β
Eα(L(Nδ)α) and γ = − ln(β)

Nδ
. This proves the exponential stability of

system (11)-(13) and achieves the proof of Theorem 1.
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4 Exponential Stabilization of Fractional-Order
Chaotic Financial Systems

In this section, we will apply the results developed in Section 2 to stabilize the system
(7)-(9). Since x = 0 is not an equilibrium point for the system (7)-(9), but xe = (0, 5, 0)T

is, we will first put y = x − xe to align with the framework of Theorem 1. The system
(7)-(9) can then expressed in the following form:

cDα
t0
y(t) = f(t, y(t)); t > t0 (23)
y(t+0 ) = y0. (24)

Where, f(t, y) =
(
gy3 + (y2 + 5 − a)y1, b(y2 + 5)2 − sy21 + r,−cy3 + −βy1 − p(y2 + 5)

)T .
Consider the control u defined by

u(y(t)) = C(t)y(t), (25)

where, the matrix C(t) is given by

C(t) =


−1 0 −4

5
cos(3t)

0 −1− 4

5
sin(2t) 0

−4

5
sin(3t) 0 −1

 . (26)

The controlled system (23)-(24) takes the following form:

cDα
t0
y(t) = f(t, y(t)), t 6= tk; k = 1, 2, ... (27)

y(t+k ) =

{
y(tk) + Cy(tk), Ik 6= ∅,
y(tk), Ik = ∅.

(28)

Since the components of f are polynomial, f is a continuously differentiable function and
therefore locally Lipschizian with respect to the variable y. Moreover, it can be verified
that for all y ∈ R3, inequality (14) is satisfied with µ = 4/5. Thus all assumptions of
Theorem 1 are verified, and the system (27)-(28) is exponentially stable.

The fractional differential systems (7)-(9) and (27)-(28) are simulated with Matlab
R2017a. The methodology adopted for the numerical solution of these systems involves
the use of the fde12 solver specifically designed for the treatment of fractional differential
equations, a model introduced in [27] and subsequently updated in the implementation
detailed in [28]. The use of this solver underlines the commitment to precision and
accuracy in the computational treatment of these complex systems and marks a significant
advance in the field of fractional calculus and its practical applications.

The state trajectories of the fractional order system (7)-(9) are depicted in Figure 1
and Figure 2. The chaotic nature of the uncontrolled system is clearly evident.

Figure 3 illustrates the outcomes of the numerical simulation, demonstrating the ex-
ponential convergence of solutions of system (27)–(28) under the time-triggered control
described by the mechanism E (3a). Sub-figure 3a shows the convergence to zero of the
yi components of system (27)–(28), sub-figure 3b illustrates the exponential convergence
to zero of the solution parameter y(t) of system (27)–(28), while sub-figure 3c records the
intervention moments to activate the control in system (27)–(28).
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(a) Numerical simulations for x1 − x2 − x3
phase. (b) Numerical simulations for x1 − x2 phase.

(c) Numerical simulations for x1 − x3 phase. (d) Numerical simulations for x2 − x3 phase.

Figure 1: Chaotic behavior of system (7)–(9).
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(a) Time series of x1. (b) Time series of x2.

(c) Time series of x3. (d) Time series of the solution x.

Figure 2: Chaotic behaviours of the solution x(t) of the system (7)–(9).
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(a) Convergence of ‖y(t)‖. (b) Convergence of yi(t).

(c) Impulsive instants.

Figure 3: System (27)–(28) under TTM (E).
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5 Conclusion
In this paper, rapid exponential stabilization via time-triggered control has been in-

vestigated for fractional-order systems. As an application of the obtained theoretical
results, the exponential stabilization of fractional-order chaotic systems in finance is also
presented in the simulation example. The exponential stabilization of fractional-order
dynamical systems via event-driven impulsive control with delay will be investigated in
future studies.
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