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Abstract 

In this study, we examine the thermal properties of 16O and 40Ca isotopes utilizing an 

independent quasi-particle model within a three-dimensional harmonic oscillator 

potential as the mean-field potential. Our calculations are grounded in quantum 

statistics within the canonical ensemble framework, from which we derive the partition 

function. We construct the partition functions using two distinct models: the first treats 

nucleons as a fermion gas and employs an antisymmetric partition function recursion 

formula incorporating bulk spin pairings based on Hund’s rule. The second model 

considers the nucleon system as isoscalar clusters of spin vector bosons. Subsequently, 

we compute the thermal energy and heat capacity as functions of temperature. 

Furthermore, we calculate the level density and compare it with available experimental 

data. The results are promising, displaying excellent agreement with the experimental 

level densities. 

PACS numbers: 21.10.Ma, 21.10.Pc, 21.60.Cs, 21.60.n, 24.10.Cn, 24.10.Pa 

Keywords: Nuclear physics, Statistical spectroscopy, Thermal properties of nuclei, 

level densities. 

I. INTRODUCTION  

In nuclear scattering processes, such as inelastic heavy ion scattering and fusion 

reactions, energy is transferred from the relative motion of the colliding nuclei to the 

internal degrees of freedom of the reaction products. This transformation of energy may 
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be an efficient method of heating nuclei. Knowing the thermal properties for nuclear 

systems is of great importance for understanding these reaction processes.  

Nuclei under such conditions often exhibit behaviors akin to liquid drops, capable of 

undergoing phase transitions that can be described by models considering the van der 

Waals-like interactions of the nuclear force. Such models predict liquid-gas phase 

transitions in nuclei, supported by experimental evidence observed in fragmentation 

patterns produced in proton-induced nuclear collisions [1]. 

This study utilizes the three-dimensional Harmonic Oscillator (3DSHO) model to 

investigate the thermal properties of  4He, 16O and 40Ca isotopes. This model simplifies 

the complex interactions within nuclei and provides a clear framework for 

understanding their thermal behavior at various excitation energies. The canonical 

ensemble approach, used to model the system in thermal equilibrium, allows for 

detailed analysis of the single-particle (SP) energy levels and their population under 

thermal stress, thus influencing the nuclear stability against deformation [2]. 

The focus on 4He,  16O and 40Ca, all of which are stable and doubly magic isotopes, is 

due to their closed shell characteristics, which simplify many-body interactions and 

make them ideal subjects for theoretical studies. By comparing the calculated thermal 

properties, such as excitation energy, heat capacity, and level density, with experimental 

data, we aim to calibrate the validity of our model and the approximations used to 

account for pairing effects. 

II. THE SYSTEM HAMILTONIANS  

In this section, we present the Hamiltonian used in the applications of later sections. 

We choose the three-dimension simple harmonic oscillator (3DSHO) as the mean-field 

potential for modeling the nuclear matter of  4He,  16O and 40Ca Isotopes. 

A. The Three-Dimensional Harmonic Oscillator 

The 3DSHO serves as a simple qualitative guide for the statistical properties of nuclei 

at moderate excitation energies or temperatures where details of the NN interactions 

and intrashell SP details are less important. For a doubly magic nuclei like 4He,  40Ca 
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and 16O, the 3DSHO may be somewhat more useful as its non-degenrate ground state 

and large gap more closely resemble physical reality than the case of open shell nuclei. 

Hamiltonian and Energy Levels 

In a given many body state, N identical non-interacting particles in the 3DSHO occupy 

SP states labelled by i = 1,2,..., N, each with its SP energy  

= (𝑛𝑥
𝑖 + 𝑛𝑦

𝑖 + 𝑛𝑧
𝑖 +

3

2
)ℏ𝜔. (1) 

The total energy for that state can be defined, in terms of an integer 𝑗, as 

𝐸𝑗 =∑  

𝑁

𝑖

= (∑  

𝑁

𝑖

 𝑛𝑥
𝑖 + 𝑛𝑦

𝑖 + 𝑛𝑧
𝑖

⏟          
𝑗

+
3𝑁

2
)ℏ𝜔 = (𝑗 +

3𝑁

2
)ℏ𝜔. 

Canonical Partition Function 

Performing this sum for the lowest 3DSHO configuration corresponding to  4He, 16O 

and  40Ca leads to 3DSHO ground states with energies (6ℏ𝜔),(24ℏ𝜔) and (120ℏ𝜔) . 

From quantum statistics, the canonical partition function for 𝑁 particles are given as 

𝒵𝑁 =∑ 

∞

𝑗=0

 𝑔𝑗exp [−𝛽 (𝑗 +
3𝑁

2
)ℏ𝜔] , (2) 

where 𝑔𝑗 is the degeneracy of the 𝑗th  state and 𝛽 = (𝑘𝐵𝑇)
−1. For 𝑁 particles in the 

3DSHO, the factor 𝑔𝑗 is not known in closed form for both fermion and bosons [3]. It 

is sufficient for our purposes to obtain a closed form for the single-particle (SP) 

partition function in the 3DSHO which is given by 

𝒵1(𝛽) = (
exp (−

𝛽ℏ𝜔
2
)

1 − exp (−𝛽ℏ𝜔)
)

3

. (3) 

This SP partition function is the starting point to obtain information about the many-

fermion system in the 3DSHO as will be shown in Section (III) 
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III. STATISTICAL MECHANICS IMPLEMENTATION 

A. Introduction  

In this section we utilize the population of single-particle (SP) states thermally by 

nucleons using the canonical ensemble and we account for additional interaction 

effects. The thermal population of the single-particle (SP) states can be carried out for 

the desired number of nucleons using the antisymmetric summation of fermionic 

partition functions for subsystems through the recursion relation given in Ref. [4]. For 

n identical particles subject to any SP Hamiltonian (i.e. omitting particle-particle 

interactions), the canonical partition function can be constructed starting with the SP 

partition function [4]  

𝒵𝑛
±(𝛽) =

1

𝑛
∑  

𝑛

𝑖=1

  (±1)𝑖+1𝒵1(𝑖𝛽)𝒵𝑛−𝑖
± (𝛽),  𝒵0(𝛽) = 1, (4) 

where the plus and the minus signs stand for bosons and fermions, respectively. The 

recursion formula (4) gives exact values of the partition functions at specific values of 

𝑛 [4]. Earlier implementations of similar recursion formulas were carried out to obtain 

observables for nuclear systems [5 − 8]. 

In the 3DSHO when 𝑛 = 1, 𝒵1
±(𝛽) = 𝒵1(𝛽) and the starting point to build the partition 

function is given by Eq.(3). The partition functions 𝒵𝑛
±are then rational functions of 

𝑦 = exp (−ℏ𝜔) and can be expanded in a power series [9-11] 

𝒵𝑛
±(𝑦) =

𝑦
3𝑛
2

∏  𝑛
𝑗=1   (1 − 𝑦

𝑗)3
𝑃𝑛
±(𝑦), (5) 

where 𝑃𝑛
±(𝑦) is a polynomial in 𝑦. Substituting Eq.(5) into Eq.(4), we obtain a recursion 

relation for the polynomials: 

𝑃𝑛
±(𝑦) =

1

𝑛
∑  

𝑁

𝑘=1

  (±1)𝑘+1
∏  𝑛
𝑗=𝑛−𝑘+1  (1 − 𝑦

𝑗)
3

(1 − 𝑦𝑘)3
𝑃𝑛−𝑘
± (𝑦), (6) 

where 𝑃0
±(𝑦) = 𝑃1

±(𝑦) = 1 [9]. Although the partition functions can be obtained using 

Eq.(4), the polynomials in Eq.(5) lead to improved stability in the numerical evaluation 
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since they are better behaved near the boundaries of 𝑦. For larger numbers of particles, 

the evaluation of the partition function near zero temperature is very difficult. 

Therefore, we employ numerical techniques which factorize and test each term to avoid 

overflow or underflow. In addition, we implement a multi-precision algorithm called 

"quad double" developed by Hida and Bailey [12, 13] which enables us to compute 

observables up to 212 bits of floating-point accuracy. 

B. Configuration-Restricted Recursion 

We restrict the configurations when recursively constructing the partition function in 

order to take into account pairing effects. The technique is implemented for a fixed 

species of nucleon (protons or neutrons) by constructing the partition function for a 

subgroup of that species to represent a specific value of the magnetic projection of the 

total angular momentum quantum number. 

Now let 𝐴 = 𝑍 + 𝑁, where 𝐴, 𝑍, and 𝑁 are the mass, the atomic, and the neutron 

numbers, respectively. For  40Ca, an even-even nucleus, we evaluate the partition 

function first for, say, spin-up protons and neutrons, 𝒵𝑍/2
(↑)

 and 𝒵𝑁/2
(↑)

, respectively. Then 

we evaluate the partition function for spin-down protons and neutrons, 𝒵𝑍/2
(↓)

 and 𝒵𝑁/2
(↓)

, 

respectively. The total nuclear partition function is thus 

𝒵𝐴(𝛽) = (𝒩𝑍𝒵𝑍/2
(↑)
𝒵𝑍/2
(↓)
)⏟        

𝒵𝑍
(↑↓)

(𝒩𝑁𝒵𝑁/2
(↑)
𝒵𝑁/2
(↓)
)⏟          

𝒵𝑁
(↑↓)

, (7)
 

where 𝒩𝑍 and 𝒩𝑁 are proton and neutron normalization factors, given by 

𝒩𝑖 =
Ω𝑖
(↑↓)

Ω𝑖/2
(↑)
Ω𝑖/2
(↓)
;      ∀𝑖 = 𝑍 or 𝑁, (8) 

where Ω is total number of accessible states. 

Once the partition function is computed for the desired system at a given temperature, 

the observables, such as the average thermal energy 𝐸𝐴, the heat capacity 𝐶𝐴, and the 

level density 𝑔𝐴 can be computed, respectively, in the canonical ensemble as 
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𝐸𝐴(𝛽) = −
∂

∂𝛽
log 𝒵𝐴(𝛽);           𝐶𝐴(𝛽) = −𝑘𝐵𝛽

2
∂𝐸𝐴
∂𝛽

, (9) 

and 

𝑔𝐴(𝐸) =
𝛽𝑒𝑆(𝛽)/𝑘𝐵

√2𝜋𝐶𝐴(𝛽)/𝑘𝐵
=

𝛽

√2𝜋𝐶𝐴(𝛽)/𝑘𝐵
𝒵𝐴(𝛽)𝑒

𝛽𝐸𝐴(𝛽). (10) 

 

Eq.(10) is calculated using method of steepest descent [3]. The factor 

𝒵𝐴(𝛽)exp (𝛽𝐸𝐴(𝛽)) is the number of microstates Ω(𝐸). We can easily prove in the 

canonical ensemble that [3] 

Δ𝐸 ≡ √⟨𝐸𝐴
2⟩ − ⟨𝐸𝐴⟩2 =

1

𝛽
√𝐶𝐴(𝛽)/𝑘𝐵 . (11) 

Therefore Eq.(10) can be written as 

𝑔𝐴(𝐸) =
1

√2𝜋

Ω(𝐸)

Δ𝐸
. 

As 𝛽 → ∞, Δ𝐸 → 0, the canonical ensemble is not a valid approach to evaluate level 

densities only since statistics are low near zero temperatures. Here, the microcanonical 

ensemble could be used to obtain level densities.  

To evaluate the nuclear thermal properties using the 3DSHO, we use Eqs.(7-10) 

together with Eqs.(4-6). 

 

C. Symbolic Approach  

O we use Mathematica in computing the partition functions and the 16He, and 6He, 4For 

rest of observables up to level densities. We start from single particle oscillator in 1D  

𝜀𝑛 = −𝑉0 + (𝑛 +
1

2
)ℏ𝜔. (12) 

The partition function for a single particle 1-D oscillator is:  



 162 

𝑍1
1𝑑(𝛽) = ∑  

𝑛

  𝑒−𝜀𝑛𝛽 =∑  

∞

𝑛=0

  𝑒−[−𝑉0+(𝑛+
1
2
)ℏ𝜔]𝛽

  = ∑  

∞

𝑛=0

  𝑒𝑉0𝛽𝑒−ℏ𝜔𝛽/2𝑒−𝑛ℏ𝜔𝛽

  = 𝑒𝑉0𝛽𝑒−ℏ𝜔𝛽/2∑  

∞

𝑛=0

  (𝑒−ℏ𝜔𝛽)
𝑛

  = 𝑒𝑉0𝛽
𝑒−ℏ𝜔𝛽/2

1 − 𝑒−ℏ𝜔𝛽
 

(13) 

 

For a in 3-D oscillator, the single particle partition becomes:  

𝑍1
3𝑑(𝛽) = (𝑍1

1𝑑(𝛽))
3

= 𝑒3𝑉0𝛽 (
𝑒−ℏ𝜔𝛽/2

1 − 𝑒−ℏ𝜔𝛽
)

3

. (14) 

 

Using 𝑥 = 𝑒−ℏ𝜔𝛽, we can express the 3-D partition function as:  

𝑍1
3𝑑(𝛽) = 𝑥−

3𝑉0
ℏ𝜔 (

𝑥1/2

1 − 𝑥
)

3

. (15)

 

 

General Simplifications 

 

For Fermions: 

The generalized partition function is:  

𝑍𝐴(𝑥) =
1

(
𝐴
4 !)

4 𝑥
𝐴(
3
2
−3

𝑉0
ℏ𝜔
)𝑓𝐴(𝑥) (16)

 

Calculating the Potential depth from the ground state energy for fermions:  

 

(𝐸4He
F )

𝑔𝑠
= 6ℏ𝜔 − 12𝑉0 (17) 
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(𝐸6He
F )

𝑔𝑠
= 11ℏ𝜔 − 18𝑉0 (18) 

(𝐸16𝑂
F )

𝑔𝑠
= 36ℏ𝜔 − 48𝑉0 (19) 

(𝐸40𝐶𝑎
F )

𝑔𝑠
= 120 ℏω − 120𝑉0 (20) 

 
 

The potential depth for fermionic oscillators, calculated from the ground state energy 

which must equal the binding energy as follows:  

(𝑉0)4𝐻𝑒
𝐹

 
=
 ℏ𝜔 + 4.71594

2
(21) 

(𝑉0)6𝐻𝑒
𝐹

 
=
 11ℏ𝜔 + 29.271

18
(22) 

(𝑉0)16𝑂
𝐹

 
=
3 ℏ𝜔 + 10.635

4
(23) 

(𝑉0)40𝐶𝑎
𝐹 = ℏ𝜔 + 2.850435 (24) 

 

Note: For fermions, unlike bosons, we were not able to find a general formula for 

ground state energy similar to Eq. (26). This is likely due to the influence of the Pauli 

exclusion principle, which leads to a more complex filling of energy levels that varies 

significantly between different nuclei.  

For Bosons 

For 𝑁 bosons the generalized partition function is: 

𝑍𝑁
𝐵(𝑥) =

1

𝑁!
𝑥𝑁(

3
2
−3

𝑉0
ℏ𝜔
)𝑓𝑁(𝑥) (25) 

The generalized ground state energy for bosons:   

𝐸𝑔𝑠
𝐵 = 𝑁 (

3

2
ℏ𝜔 − 3𝑉0) (26) 

 

Calculating the Potential depth from the ground state energy for Bosons:  
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(E4He
B )

gs
= 3ℏ𝜔 − 6𝑉0 (27) 

(𝐸6He
B )

𝑔𝑠
=
9

2
ℏ𝜔 − 9𝑉0 (28) 

(𝐸16𝑂
B )

𝑔𝑠
= 12ℏ𝜔 − 24𝑉0 (29) 

(𝐸40𝐶𝑎
B )

𝑔𝑠
= 30 ℏω − 60𝑉0 (30) 

 
 

The potential depth for bosonic oscillators, calculated from the ground state energy 

which must equal the binding energy as follows:  

(𝑉0)4𝐻𝑒
𝐵

 
=
 ℏ𝜔 + 9.4309

2
(31) 

(𝑉0)6𝐻𝑒
𝐵

 
=
1

2
ℏ𝜔 +

29.271

9
(32) 

 

(𝑉0)16𝑂
𝐵

 
=
ℏ𝜔 + 10.635

2
(33) 

(𝑉0)40𝐶𝑎
𝐵 =

ℏ𝜔 + 11.40174

2
(34) 

 

IV. RESULTS AND DISCUSSION 

In this section, we presents the results of our calculations for the thermal properties of 

 4He,  6He, 16O and 40Ca.We compared  4He level densities with experimental data and 

other well-established calculations of the SMSPS [16] and the ab initio MFD [8], while 

only using experimental data for  6He, 16O and 40Ca.  Other results we seek in this paper 

is to obtain the oscillator potential depth 𝑉0, which plays an important rule in mean field 

and MFD calculations.  

A. Thermal properties of 4He 

Fig. (1) shows the level densities of  4He as a function of excitation energy, calculated 

using 3D-SHO potential for three different values of ℏ𝜔 as outlined in Table (1). The 
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calculated level densities are compared with those measured experimentally, and those 

calculated using SMSPS method [16] and MFD ab initio technique [8]. The figure 

shows that the level density calculated via 3D-SHO with ℏ𝜔 = 18.427 MeV ref. [14] 

agrees very well with the experimental and MFD level densities. 

Table 1: The adopted values of ℏ𝜔 and references obtained from. 

Ref. ℏω(𝑀𝑒𝑉) 

Shehadeh [3] 12.1482 

Blomqvist and Molinar [14] 18.427 

Ring and Schuck [15] 25.8284 

Fig. (2) shows the level densities of boson gas computed at ℏ𝜔 values range from 10 -

11 MeV, compared with those of 4He fermion gas calculated using 3D-SHO at ℏ𝜔 =

18.427 MeV, MFD ab initio, and experimental level densities. The agreement between 

the boson gas level density and MFD is excellent. Knowing that MFD is calculated in 

the following model spaces: 9 ℏ𝜔 odd parity + 10 ℏ𝜔 even parity states We thus 

conclude that the 4He boson gas successfully simulates the level densities of 4He.  

Figure 1: The level densities of 4He as a function of the excitation energy, calculated using 

fermion gas in 3D-SHO potential at various values of ℏ𝜔 (see legends). The results are compared 

with level densities calculated using SMSPS and MFD models. The experimental data histogram 

is obtained from counting the number of levels per unit energy per degeneracy.  
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Fig. (3) shows the heat capacity curves in unit of Boltzmann constant 𝑘𝐵  for various 

values of ℏ𝜔 given in table (1). The heat capacities exhibit similar behaviors with 

different responses. It is easier to increase the internal energy of system with smaller 

ℏ𝜔 as the temperature rises. This is because the energy spacings of the levels are 

smaller and the excitations become easier. Consequently, the heat capacity curve with 

the smallest ℏ𝜔 shows the fastest rise among the three curves. All curves ultimately 

converge to the classical limit 3𝐴 = 12 at higher temperature. Again, the curve with 

smaller ℏ𝜔 has the fastest convergence rate, while the one with the larger ℏ𝜔 has the 

slowest convergence rate. There is no indication of any quantum phase transition except 

for the transition from quantum to classical limit. To view how the fermion and boson 

gas models differ from each other for 4He, we compare the heat capacities computed at 

the values of  ℏ𝜔 that give reliable level densities. This is shown in fig. (4). For fermion 

gas model we use ℏ𝜔 = 18.427 MeV and for boson gas model we use ℏ𝜔 = 11 MeV. 

The behavior for the two curves is quite different and we can notice a small peak near 

𝑇 = 7.0 MeV before the gas converges to the classical value of  
3

2
𝐴 =  6. This can be a 

sign of phase transition in the nuclear matter, especially if we understand that this 

temperature is close to the binding energy per nucleon for  4He. The result is very 

encouraging as it shows the boson gas model is more realistic than the fermion gas 

model to describe a highly correlated system like nuclear matter. 

Figure 2: The level densities of 4He as a function of excitation energy, calculated using boson 

gas in 3D-SHO potential at ℏ𝜔 = 10 and 11 MeV (see legends). The results are compared 

with the level densities of MFD model and the experimental data.  
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level density curves of 4He using various models as a function of the excitation energies 

are shown in fig.(5). The level density of the boson-model at ℏ𝜔 = 9.2 MeV 

astonishingly agrees with the experimental data. A novel technique to simulate the level 

density of doubly magic nuclei could extend to include all even-even nuclei. 

  

Figure 4: The heat capacities of 4He calculated by two models (see legends), fermion gas 

model in 3DSHO at ℏ𝜔 = 18.427 MeV, and boson gas model in 3DSHO at ℏ𝜔 = 11 MeV.  

 

Figure 3: The heat capacities of 4He at various values of ℏ𝜔 (see legends) calculated 

using fermion gas model in 3DSHO.  
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B. Thermal properties of 6He 

Table 2: The adopted values of ℏ𝜔 and references obtained from. 

Ref. ℏω(𝑀𝑒𝑉) 

Shehadeh [3] 6.6014 

Blomqvist and Molinar [14] 17.1931 

Ring and Schuck [15] 22.56324 

Fig. (6) again confirms that the value of ℏ𝜔 obtained from ref. [14] gives more reliable 

results for level density. This is clear due to the agreement with experimental data at 

low laying levels. For higher excitations, the experimental data fall behind the 

theoretical predictions. The lack of experimental results is attributed to the limitations 

of the energy and time resolutions of the detectors. Fig. (7) shows the heat capacity 

curves in unit of Boltzmann constant 𝑘𝐵  for various values of ℏ𝜔 given in table (2). 

The general behavior is similar to what we have for 4He in fig. (3). The heat capacities 

have exactly similar behaviors with different responses. It is easier to raise the internal 

energy of system with smaller ℏ𝜔 with increasing the temperature.  

Figure 5: The level densities of 4He as a function of excitation energy. The level densities are 

calculated using boson-gas model in 3D-SHO potential at ℏ𝜔 = 9.2 , 10, 11 MeV MeV (see 

legends) and fermion-gas model at ℏ𝜔 = 18.427 MeV. The results are compared with level 

densities of MFD model and experimental data.  
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The effect of energy level spacings, represented by the value ℏ𝜔 plays important role 

in the change of energy with temperature. All curves ultimately converge to the 

classical limit 3𝐴 = 18 value at higher temperature. Again, the curve with smaller ℏ𝜔 

has the fastest convergence rate, whereas the one with the larger ℏ𝜔 has the slowest 

convergence rate. There is no sign for any quantum phase transition except for the 

transition from quantum to classical limit.  

Figure 6: The level densities of 6He as a function of excitation energy, calculated using 

fermion gas in 3D-SHO potential at various values ℏ𝜔 (see legends). The results are 

compared with the experimental data.  

 

Figure 7: The heat capacity of 6He at various values of  ℏ𝜔 (see legends) calculated using 

fermion gas in 3DSHO.  
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To confirm our argument, we extend this work to include two doubly magic nuclei, 

namely 16O and  40Ca. 

C. Thermal properties of 16O 

Fig. (8) shows the level densities of 16O as a function of excitation energy, calculated 

using fermion gas in 3DSHO potential for three different values of ℏ𝜔 These values 

are given in table (3). In our initial tests with 16O using the fermionic model, the ℏ𝜔 

values from table (3) did not align well with the experimental data. Consequently, we 

experimented with other values and determined that ℏω = 12 MeV agrees very well 

with the experimental level densities.  

Table 3: The adopted values of ℏ𝜔 and references obtained from. 

Ref. ℏω(𝑀𝑒𝑉) 

Shehadeh [3] 9.64205 

Blomqvist and Molinar [14] 13.921 

Ring and Schuck [15] 16.2708 

 

Fig. (9) illustrates the level densities of 16O as a function of excitation energy, calculated 

using boson gas in 3DSHO potential for three different values of ℏ𝜔. The results 

indicate level density calculated with ℏ𝜔 = 4.875 MeV is in excellent agreement with 

the experimental data. 
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Figure 8: The level densities of 16O as a function of excitation energy, calculated using 3D-SHO  models for 

fermion gas at ℏ𝜔 = 9.64205 MeV (black line), ℏ𝜔 = 11 MeV (red solied line), ℏ𝜔 = 12 MeV (blue dashed 

line), ℏ𝜔 = 13.921 MeV (blue solid line) and ℏ𝜔 = 16.2708 MeV (red dashed line). These are compared 

with experimental data (green stepwise). 

 

Fig.9: the level densities of 16O are plotted as a function of excitation energy. Calculated using 3D-SHO 

models for bosons gas (blue line, ℏ𝜔 = 4 MeV) ,(red line, ℏ𝜔 = 4.875 MeV) and (black line, ℏ𝜔 = 6 MeV) 

are compared with experimental data (green stepwise).  
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Fig. (11) shows the heat capacity curves in unit of Boltzmann constant 𝑘𝐵 for various 

values of ℏ𝜔 given in table (3) and ℏω = 12 MeV. The heat capacities have exactly 

behaviors with different responses. It is easier to raise the internal energy of system 

with smaller ℏ𝜔 with increasing the temperature. the effect of energy level spacings, 

represented by the value ℏ𝜔 plays important role in the change of energy with 

temperature. This is why the heat capacity curve with small ℏ𝜔 has the fastest rise 

among the three curves. All curves ultimately converge to the classical limit 3𝐴 = 48 

value at higher temperature. Again, the curve with smaller ℏ𝜔 has the fastest 

convergence rate, whereas the one with the larger ℏ𝜔 has the slowest convergence rate. 

There is no sign for any quantum phase transition except for the transition from 

quantum to classical limit. In Fig. (11) we notice the kink at around 4 MeV, which 

indicates a change in the contributions to the heat capacity. At lower temperatures 

(below this kink), the contribution to the heat capacity comes from the valence shell. 

At higher temperatures (above the kink), the contribution to internal energy comes from 

the deeper shells. To view how fermion and boson gas models differ from each other 

for 16O, we compare the heat capacities computed at the values of ℏ𝜔 that give reliable 

level densities. This is shown in fig. (12). For fermion gas model we use ℏω = 12 MeV 

and for boson gas model we use ℏ𝜔 = 4.875 MeV. The behavior for the two curves is 

quite different and we can notice a small peak near T = 7 MeV.  Before the gas 

Figure 10: the level densities of 16O are plotted as a function of excitation energy. Calculated 

using 3D-SHO models for fermion gas (blue line, ℏ𝜔 = 12 MeV) and boson gas (red line, ℏ𝜔 = 

4.875 MeV), are compared with experimental data (green stepwise). 
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converges to the classical value of  3𝑁 =  24, since we have 8 boson system. This could 

indicate a phase transition in nuclear matter, particularly considering that this 

temperature is close to the binding energy per nucleon for 16O. 

 

Fig.12: The heat capacity of 16O as a function of  inverse temperature (𝛽−1), calculated using 

a 3D-SHO models for fermion gas(blue line , ℏ𝜔 = 12 MeV) and boson gas (red line, ℏ𝜔 = 

4.875 MeV). 

 

 

Fig.11: The heat capacity of 16O as a function of inverse temperature (𝛽−1), calculated using a 3D-SHO 

fermion gas model at various ℏ𝜔 values. 
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D. Thermal properties of  𝟒𝟎𝐂𝐚 

Figure (13) shows the level densities of 40 Ca as a function of excitation energy, 

calculated using fermion gas in 3DSHO potential for three different values of ℏω.  

These values are given in table (4). In our initial tests with 40 Ca using the fermionic 

model, the ℏ𝜔 values from table (4) did not align well with the experimental data. 

Consequently, we experimented with other values and determined that ℏω = 8 MeV 

agrees very well with the experimental level densities. 

 

Table 4: The adopted values of ℏ𝜔 and references obtained from. 

Ref. ℏω(𝑀𝑒𝑉) 

Shehadeh [3] 5.23451 

Blomqvist and Molinar [14] 11.0206 

Ring and Schuck [15] 11.9884 

Fig.13: The level densities of 40 Ca as a function of excitation energy 𝐸𝑥, calculated using 3DSHO  models for 

fermion gas at ℏ𝜔 = 8 MeV (black solid line), ℏ𝜔 = 5.23451 MeV (blue line), ℏ𝜔 = 11.0206 MeV (red line) 

and ℏ𝜔 = 11.9885 MeV (black dash-dot line). These are compared with experimental data (green stepwise). 
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 Fig. (14) illustrates the level densities of 40 Ca as a function of excitation energy, 

calculated using boson gas in 3DSHO potential for three different values of ℏ𝜔. The 

results indicate level density calculated with ℏ𝜔 = 2.2 𝑀𝑒𝑉 is in excellent agreement 

Fig.15: the level densities of 40 Ca are plotted as a function of excitation energy 𝐸𝑥. Calculated using 

3DSHO models for fermion gas (black line, ℏ𝜔 = 8 MeV) and boson gas (red line, ℏ𝜔 = 2.2MeV), 

are compared with experimental data (green stepwise). 

 

Fig.14: the level densities of 40 Ca are plotted as a function of excitation energy 𝐸𝑥. 

Calculated using 3DSHO models for boson gas (blue dashed line, ℏ𝜔 = 2 MeV), (red line, 

ℏ𝜔 = 2.2 MeV) and (black line, ℏ𝜔 = 2.5 MeV), are compared with experimental data (green 

stepwise). 
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with the experimental data. Fig. (16) shows the heat capacity curves in unit of 

Boltzmann constant 𝑘𝐵 for various values of ℏ𝜔 given in table (4) and ℏω = 8 MeV . 

The heat capacities have exactly behaviors with different responses.  It is easier to raise 

the internal energy of system with smaller ℏ𝜔 with increasing the temperature. the 

effect of energy level spacings, represented by the value ℏ𝜔 plays important role in the 

change of energy with temperature. This is why the heat capacity curve with small ℏ𝜔 

has the fastest rise among the three curves. All curves ultimately converge to the 

classical limit 3𝐴 = 120 value at higher temperature. Again, the curve with smaller ℏ𝜔 

has the fastest convergence rate, whereas the one with the larger ℏ𝜔 has the slowest 

convergence rate. There is no sign for any quantum phase transition except for the 

transition from quantum to classical limit. In fig. (4.16) we notice the kink at around 3 

MeV, which indicates a change in the contributions to the heat capacity. At lower 

temperatures (below this kink), the contribution to the heat capacity comes from the 

valence shell. At higher temperatures (above the kink), the contribution is due to the 

deeper shells. To view how fermion and boson gas models differ from each other 

for 40Ca, we compare the heat capacities computed at the values of ℏ𝜔 that give reliable 

level densities. This is shown in fig. (17). For fermion gas model we use ℏω = 8 MeV 

and for boson gas model we use ℏ𝜔 = 2.2 MeV. The behavior for the two curves is 

quite different and we can notice a small peak near 𝑇 = 4 MeV.  Before the gas 

converges to the classical value of 3𝑁 =  60, since we have 20 boson system. This 

could indicate a phase transition in nuclear matter, particularly considering that this 

temperature is close to the binding energy per nucleon for 16O. 
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Fig.17: The heat capacity of 40 Ca as a function of  inverse temperature (β−1), calculated 

using a 3D-SHO models for fermion gas(blue line , ℏω = 8MeV) and boson gas (red line, 

ℏω = 2.2 MeV). 

 

 

 Fig.16: The heat capacity of 40 Ca as a function of inverse temperature (𝛽−1), calculated 

using a 3D-SHO fermion gas model at various ℏ𝜔 values. 
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E. Potential depth  

Phenomenological potential depth plays important role in generating the quantum states 

for the bound systems. The initial correct value speeds up the convergence process of 

state generation using the Hartree-Fock method or matrix diagonalization in multi-

fermion dynamics code [8]. It is an advantage to use the ground state energy to predict 

the values of the potential depths and compare it with the experimental values of the 

binding energies.  

Table (5) summarizes the oscillator’s potential depth 𝑉0 for  4He,  6He, 16O and 40Ca, as 

calculated within the 3DSHO model for fermions. Table (6) outlines the potential depth 

𝑉0 for bosons, reflecting different modeling requirements and implications in the 

behavior of fermions versus bosons under similar conditions. 

 

 

 

 

 

 

 

 

 

Table 5: potential depth (𝑉0) for fermions: 4He, 6He, 16O and 40Ca   

3DSHO Model 

fermions 
ℏ𝜔(MeV) Potential depth 𝑉0(MeV) 𝐵𝐸(MeV) 𝐵𝐸/𝐴(MeV) 

He4 18.43 11.57 -28.30 -7.07 

He6 17.19 12.13 -29.27 -4.88 

O16 12 11.65 -127.6193 -7.9762 

Ca40 8 10.85 -342.0522 -8.5513 
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In conclusion, using an appropriate mean-field potential within the 3DSHO treatment 

yields a successful model. approximately predicting the level densities for 4He,  16O and 

40Ca, which align well with experimental data. This success in describing the level 

densities lends significant support to the model's predictions. The prediction power of 

the model is drastically improved if one can correctly calculate the values of ℏ𝜔 for 

relevant nuclei. We can execute such calculation by fitting the optimal ℏ𝜔 values versus 

A for doubly magic nuclei.  In fig. (18).  shows best fitting of ℏ𝜔 using the function, 

we know 

ℏ𝜔 = 𝐶𝐴−𝛼. 

For fermions, the best fit is 

      ℏ𝜔 = 30.5358𝐴−0.35492 MeV, (35) 

and for Bosons, 

ℏ𝜔 = 30.5358𝐴−0.60823 MeV.   (36) 

3DSHO Model 

bosons 
ℏ𝜔(MeV) Potential depth 𝑉0(MeV) 𝐵𝐸(MeV) 𝐵𝐸/𝐴(MeV) 

He4 9.20 9.31 -28.30 -7.07 

He6 3.73 5.12 -29.27 -4.88 

O16 4.87 7.75 -127.6193 -7.9762 

Ca40 2.2 6.8 -342.0522 -8.5513 

Table 6: potential depth (𝑉0 )for bosons: 4He, 6He,  16O and 40Ca   
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establish Ca 40O and 16 He,4 applies solely to the nuclei  fig. (19). The fitting shown in

this fitting as definitive, further data collection is necessary. Expanding the dataset to 

include additional measurements from these and potentially other nuclei would 

provide the validation needed to generalize this model more widely. 

 

Figure 18: variation of ℏ𝜔 values versus the mass number A for fermions and bosons (A= 

4 to 40), illustrating fitted values. 

Figure 19: variation of Potential depth (𝑉0) versus mass number (A) for fermions and 

bosons. The nuclei here range from A= 4 to 40. 
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V. CONCLUSION AND FURTHER RESEARCH 

Our study demonstrates that modeling nuclear matter for doubly magic nuclei (4He, 

16O, and 40Ca) as either Fermion or Boson gases with ℏω values as specified in 

equations (35) and (36) can accurately predict experimental level densities. This 

approach also enables the derivation of potential depth values presented in Tables (5) 

and (6), which are useful for subsequent scattering cross-section calculations. Notably, 

the heat capacity calculations indicate a pronounced phase transition in the nuclear 

matter for Boson gases at approximately 7 MeV for 4He, 6 MeV for 16O, and 4 MeV 

for 40Ca. Beyond these temperatures, the nuclear matter exhibits characteristics of a 

classical gas. 

Future research should explore open shell nuclei by considering them as comprising a 

core and valence nucleons. In this framework, the core is modeled as a Boson gas of 

isoscalar, spin-vector quasi pn-particles in a three-dimensional harmonic oscillator 

potential, with the valence nucleons treated as either Fermion or Boson gases, 

depending on the number of protons and neutrons. This approach has the potential to 

further refine our understanding of nuclear matter properties and phase transitions. 
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