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Abstract 

In this study, we investigated the transitions of all types of beta decays using 

the two-particle and two-hole techniques. Specifically, we calculated the 

binding energy for Fermi decay and Gamow-Teller transitions by applying 

this technique to several intermediate isotopes. This involved calculating the 

transition forces and matrix elements for both Gamow-Teller and Fermi. 

These calculations were crucial for determining the half-life values of these 

isotopes and comparing them with existing experimental values. Our results 

demonstrate a significant agreement between the theoretical and experimental 

outcomes. Hence, we obtain the reduced amplitudes and the log ft factor and 

the half-lives of the decay. Beta  - and beta  +/EC transitions from light to 

medium nuclei. The nuclei are 6He, 18Ne, 18F, and 42Sc. 

 

1. Introduction 

 

Beta-decay is a crucial process in nuclear physics, influencing several 

scientific disciplines, notably astrophysics and particle physics.  The study of 

beta-decay provides valuable insights into the relationships between nuclear 

interactions and factors such as spin and isospin, along with other nuclear 

characteristics like mass, shape, and energy levels [1, 2]. In the context of 

astrophysics, 𝛽-decay is instrumental in the creation of neutron stars, which 

are significant in the synthesis of heavy elements within nature [3], by 

establishing the time frame for the rapid neutron-capture process through the 

half-life of 𝛽-decay. In the physics of particles, 𝛽-decay provided the initial 

experimental proof of parity violation [4] and has been used to confirm the 

Cabibbo–Kobayashi–Maskawa (CKM) matrix's unitarity [5].  
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The precise measurements of beta decay strength functions, and hence the 

decay half-lives, is a critical method for exploring physics Beyond the 

Standard Model (BSM). Such exploration could potentially reveal a new 

fundamental physics through beta decay in atomic nuclei. Moreover, the 

theoretical treatment of experimentally favored nuclei, in a framework that 

allows measuring uncertainties, remains complex. Despite these challenges, 

considerable progress has been made in recent decades towards the systematic 

development of internucleon interactions within a strong field theory 

framework. The medium-mass nuclei, often significant in BSM search, can 

now be approached from first principles, due to developments in the many-

body theory and computational capabilities [6]. Yet, the impact of 

approximation strategies in ab initio calculations on crucial observables 

remains an area for further research.  

With recent advancements in the measurement of nuclear 𝛽-decay half-lives 

facilitated by radioactive ion-beam facilities; a comprehensive compendium 

of experimental data is now accessible [7]. It is imperative to calculate the 

fundamental theoretical models and their abilities to reproduce the 

experimental outcomes and identify their strengths or weaknesses points in 

these models. This review highlights the current 𝛽-decay theory and the 

assessment of transition matrices stemming from the 𝛽-decay processes [8]. 

The two-particle, two-hole model provides an essential framework for 

describing nucleon correlations that are not captured by simpler single-

particle models. These correlations arise when nucleons are excited from 

occupied states to unoccupied states (holes) or vice versa when additional 

nucleons are placed in an excited state. Key configurations include: 

• Two-particle excitations: Two nucleons move from lower to higher 

energy levels, forming two particle-hole pairs. 

• Two-hole excitations: The removal of two nucleons from an orbital 

leaves two vacancies (holes) in the nuclear shell. 

These configurations are critical for understanding nuclear structure, 

particularly in beta decay, as weak interactions can induce transitions between 

nucleons. Two-particle and two-hole excitations can greatly affect transition 

probabilities and the shape of the strength function. Including two-particle 

and two-hole excitations provides a more accurate description of the energy 

distribution of final states in beta decay. The integration of the two-particle 

and two-hole states results in a more detailed and realistic energy distribution 

of the final states. This framework explains the mixing of configurations 
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between the initial and final states, which is important for accurately 

modelling the beta decay process.  

Several computational models have employed two-particle, two-hole 

excitations to study the beta-decay strength function. Civitarese et al. (1999) 

[9] explored beta decay using the quasiparticle-phonon model. This work 

found that collective excitations enhance the accuracy of the strength 

function, particularly at higher excitation energies. Bortignon et al. (2005) 

[10] applied the random phase approximation (RPA) to neutron-rich nuclei, 

emphasizing the importance of two-particle, two-hole correlations in 

reproducing decay rates. Danilo and Marcella (2022) [11] conducted shell-

model calculations incorporating two-particles, two-hole excitations for 

medium-heavy nuclei. Their study demonstrated that higher-order 

configurations significantly influence decay rates and the shape of the 

strength function. In recent developments, the Monte Carlo shell model 

(MCSM) [12] has been increasingly employed for beta decay involving large 

nucleon numbers. In 2017 Tsunoda et al. demonstrated the MCSM ability to 

capture the effects of two-particle, two-hole excitations on decay rates, 

yielding highly accurate strength functions. Despite the progress in applying 

the theory of two-particles, two-hole, significant computational challenges 

remain. Techniques like the Monte Carlo shell model and the Kuo-Fineman 

model help address these complexities but demand substantial computational 

resources, particularly for heavy nuclei.  

The two-particle, two-hole theory continues to refine our understanding of 

nuclear structure and weak interactions, enabling precise modelling of beta 

decay and contributing to further progress in nuclear physics and 

astrophysics. The Gamow-Teller decay for nuclear systems, starting from a 

nuclear Hamiltonian and electroweak currents, for Ca 
40   and Ni 

56  closed cores 

in the framework of the realistic Shell model. The effective shell- model 

Hamiltonian and decay operators are derived using many bodies perturbation 

theory [13]. The phenomenon of the quenching of the spin-isospin matrix 

elements has been extensively studied since the 80s of the last centuries, but 

in recent years there has been a renewed interest in his subject because of its 

possible implication in the neutrino less double- decay. 

Beta-decay strength function calculation using the two-particle, two-hole 

theory is carried out in most recent works via the SSRPA model [14]. This 

model incorporates energy density functions (EDFS) and the configuration of 

two-particle-two-hole states to enhance the accuracy of beta-decay 

calculations [14]. In the two-particle-two-hole model (SSRPA), Gamow-

Teller (GT) states are shifted downward, significantly influencing the beta-

decay process by increasing the beta-decay phase space while greatly 

reducing the half-life of beta decay in nuclei [14]. Incorporating the tensor 

factor into this model (SSRPA), further refines predictions of beta-decay half-



96 
 

lives by accurately reproducing excitation energies [14]. The two-particle-

two-hole configurations and the tensor factor have been applied to various 

magic nuclei, demonstrating remarkable agreement with experimental results 

compared to other models [14]. In previous research conducted in ref. [15], 

the study utilized the one-particle, one-hole theory to investigate beta decay 

in intermediate elements. This approach focused on modelling beta decay for 

even/odd isotopes using specific isotopes N 
15  , O 

15  , F 
17  , S 

41 . These isotopes 

were deemed suitable for the one-particle, one-hole model; however, they do 

not apply to systems requiring a two-particle, two-hole framework.   

To address this limitation, the current study adopts the two-particle, two-hole 

model to explore beta decay in isotopes classified as even/even and odd/odd 

isotopes.  The isotopes utilized in this study include He 
6  , Ne 

18  , F 
18  and S 

42 . 

This shift to the two-particle, two-hole model allows for a more 

comprehensive understanding of beta decay processes, expanding beyond the 

limitations of the one-particle, one-hole framework. Two-particle and two-

hole techniques simulate the effects of nuclear correlation. Studying all 

possible transitions using single-particle states confirms the experimental 

levels of the reference isotopes used in this study. This way the inaccuracy in 

determining the correct energy level is fixed by projecting the results onto the 

experimental nuclear level. 

Our investigation shed the light on all types of beta decays underlying 

transitions, using the two-particle and two-hole techniques. This includes 

calculating the binding energy for Fermi decay and Gamow-Teller then 

calculating the transition matrix elements for both Gamow-Teller and Fermi. 

These calculations were crucial for determining the half-life values of these 

isotopes and comparing them with existing experimental values. Our results 

demonstrate a significant agreement between the theoretical and experimental 

outcomes. Hence, we obtain the reduced amplitudes and the log ft factor and 

the half-lives of the decay. Beta  - and beta  +/EC transitions from light to 

medium nuclei. 

 If we establish two-particle states to define the valence nucleons separate 

from the core, using a phenomenological potential that includes spin-orbit 

interaction but excludes residual interaction.  The dynamics of particle-hole 

interactions are employed to obtain initial and final states, and the two-particle 

transition amplitudes for Fermi and Gamow-Teller transitions are calculated, 

leading to the determination of reduced amplitudes, logft values, and half-

lives of decays. The study examines 𝛽-decay in both beta 𝛽− and beta 𝛽+/𝐸𝐶 

transition across a range of light to medium nuclei, including  He 
6 , Ne 

18 , F 
18 , 
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and Sc 
42 . The conclusions and further research suggestions are included at 

the end of the work.  

 

 

2. Theoretical background 

2.1. Theory of nuclear 𝜷-decay 

In the nuclear scale, the𝛽−decay is written as 

X𝑁 → Y𝑁−1 + 𝑒
− + �̅�𝑒  𝑍+1

𝐴
𝑍
𝐴 . (1) 

The nuclear 𝛽+ decay is:  

X𝑁 → Y𝑁+1 + 𝑒
+ + 𝜈𝑒𝑍−1

𝐴
𝑍
𝐴  .   (2) 

Finally, nuclear EC reads: 

X𝑁 + 𝑒
− → Y𝑁+1 + 𝑒

+ + �̅�𝑒𝑍−1
𝐴

𝑍
𝐴  .  (3) 

In the three processes, Shown the parent nucleus X 
𝐴  and the daughter nucleus 

Y 
𝐴  are isobars, i.e. both have the same mass number A. This process has a 

coupling constant GF which is not fundamental. It involves two fundamental 

vertices of weak coupling 𝑔𝑊. The strength of weak interaction is measured 

in muon decay, shown in fig. (1), where 𝑞2< 𝑚𝜇𝐶
2 =106 MeV. Thus, the W-

boson propagator in the natural unit can be written as: 

−𝑖(𝑔𝑚𝜇 − 𝑞𝜇𝑞𝑣/𝑚𝑤
2 )

𝑞2 −𝑚𝑤
2

≈
𝑖𝑔𝑚𝜇
𝑚𝑤
2
 . 

In muon decay, this becomes 𝑔𝑤
2 /𝑚𝑤

2 . Hence, the weak coupling 𝑔𝑊 can be 

related to 𝐺𝐹using [ 61 ]. 

𝐺𝐹

√2
=

𝑔𝑤
2

8(𝑚𝜇𝐶
2)
2. 

(4) 

This is valid for a large mass of W-boson and small energy 𝑞2of 𝛽-decay, i.e.  

𝑞2 ≪ (𝑚𝑤𝐶
2)2. In the case of 𝑞2 ≥ (𝑚𝑤𝐶

2)2, the weak interaction is more 

probable than electromagnetic force. In other words, the weak interaction is 

only weak because of the large W-boson mass(𝑚𝑤 = 80.403 ± 0.029GeV/

𝐶2). For muon decay 𝐺𝐹 = 1.16639(1) × 10
−5GeV−2[ 61 ]. 
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Figure 1: Feynman diagram depicts the weak muon decay. The W-boson 

propagator carries momentum q, where 𝑞2 ≪ (𝑚𝑤𝐶
2)2, for precise 

measurements of the weak coupling 𝑔𝑊. 

 

 

 

 

 

 

 

 

 

Figure 2:  Nuclear 𝛽− , 𝛽+, and EC decay in the impulse approximation. In 

this picture only one nucleon contributes in the 𝛽 decay process whereas the 

remaining 𝐴 − 1 nucleons are spectators. The initial and final states 𝛹𝑖 and 

𝛹f are the intial and final nuclear states of a strongly interacting A-body wave 

function. At the weak-interaction vertices the antilepton lines are drawn as 

going backwards in time. The strength of the pointlike effective weak 

interaction vertex is given by the Fermi constant GF. 
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2.2 Half-lives, Reduced transition probabilities, and 𝒇𝒕 values 

Half-life represented by 𝑡1
2

  is computed from transition probability 𝑇𝑓𝑖, 

𝑡1
2

=
𝑙𝑛2

𝑇𝑓𝑖
 , (5) 

 
𝑇𝑓𝑖  is calculated Fermi golden rule of time-dependent perturbation theory to 

get [17] 

𝑡1
2
=



𝑓0(𝐵𝐹 + 𝐵𝐺𝑇)
, (6) 

where  (kappa) is constant [18]  

 =
2𝜋ℏ7𝑙𝑛2

𝑚𝑒
5𝑐4𝐺𝐹

2 = 6147s, 
(7) 

𝑓0  is the Lepton kinematics phase space integ𝑟𝑎𝑙, 𝑎𝑛𝑑 𝐵𝐹 and 𝐵𝐺𝑇 are the 

Fermi and Gamwo-Teller reduced transition probabilities that needed to be 

calculated, respectively. They can be broken up into factors [8],  

𝐵𝐹 =
𝑔𝑉
2

2𝐽𝑖+1
| |

2
, (8) 

And 

𝐵𝐺𝑇 =
𝑔𝐴
2

2𝐽𝑖+1
| |

2
, 

 

(9) 

where 𝐽𝑖 is the nuclear total initial angular momentum (nuclear spin). 𝑔𝐴
  and 

 𝑔𝑣
   are coupling constants for axial current and vector current, respectively 

[19].  and  are the interaction amplitudes The quantity 𝑓0𝑡1
2

 

represents the allowed 𝛽-decay transitions. In [17] it has been called the 

reduced half-life or comparative half-life. The vector coupling constant 𝑔𝑉 =

1.0. Its value is determined by conserved current 𝑗𝜇 =
1

2
�̅�𝛾𝜇𝜓 [8].  The factor 

𝑔𝐴 = 1.25 is the axial vector coupling constant of the weak interaction 

conserved axial vector current 𝑗𝐴
𝜇
=
1

2
�̅�𝛾𝜇𝛾5𝜓. Vectors have parity 

properties,�⃗� (−𝑟 ) = −�⃗� (𝑟 )  under space inversion. On the other hand, axial 

vectors 𝐴  are invariant under space inversion, 

𝐴 (−𝑟 ) = +𝐴 (𝑟 ). 
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For lepton current the violation of parity conservation is maximal, and the 

weak interaction amplitude for the leptonic contribution contains the 

combination 𝑉 − 𝐴 in equal division. This holds at the quark level of the 

hadrons [ 61 ]. 

The hadronic current: 

  𝑗 ∝ 𝑉 − (
𝑔𝐴
𝑔𝑉
)𝐴 = 𝑉 − (1.25𝐴)  .  (10) 

Thus the  𝑉 − 𝐴 current is proportional to 

𝑉 − 𝐴 ∝ �̅�𝛾𝜇(1 − 𝛾5)𝜓. (11) 

The minus sign is an indication of the left-handedness of the Leptons involved 

in the weak interactions. Since the 𝑓𝑡 value is large can be suppressed by 

logarithm, 

log 𝑓𝑡 = 𝑙𝑜𝑔10 (𝑓0𝑡1
2
[𝑠]).  (12) 

2.3 Wigner –Eckart theorem 

Assume 𝑇𝑞
(𝑘)

 is a spherical tensor operator (such as angular momentum 

operators) that acts on an angular momentum basis |𝑗𝑚⟩. The transition 

amplitude resulting from this tensor operator is detailed in references [20, 12 ] 

〈𝜉𝑓; 𝑗𝑓𝑚𝑓|𝑇𝑞
(𝑘)
|𝜉𝑖; 𝑗𝑖𝑚𝑖 〉 = 𝑀𝛿𝑚𝑓𝑚𝑖+𝑞  , 

𝑚𝑓 = 𝑚𝑖 + 𝑞 unless 𝑀 = 0. This is the Wigner-Eckart theorem. According 

to this theorem, the matrix elements of tensor operators concerning angular 

momentum eigenstates satisfy [ 12 ]: 

〈𝜉′: 𝑗′𝑚′|𝑇𝑞
(𝑘)
|𝜉; 𝑗𝑚〉 = 〈𝑗𝑚; 𝑘𝑞|𝑗𝑘; 𝑗′𝑚′〉

〈𝜉′𝑗′‖𝑇 
(𝑘)‖𝜉𝑗〉

√2𝑗 + 1
, 

(13)       

Where the double-bar matrix element is independent of 𝑚, 𝑚′, and 𝑞. The 

amplitude in the left-hand side represents the transition rom |𝜉; 𝑗𝑚⟩ to 

|𝜉′; 𝑗′𝑚′⟩ . Before we present proof of this theorem, let us look at its 

significance. First, we see that the matrix element is written as the product of 

two factors. The first factor is a Clebsch-Gorden coefficient for adding 𝑗 and 

k to get 𝑗′. It depends only on geometry, which is on the way that the system 

is oriented concerning the z-axis. There is no reference whatsoever to the 

nature of the tensor operator. The second factor does depend on the dynamics; 
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for instance, 𝜉  may stand for the radial quantum number, and its evaluation 

may involve. To evaluate 〈𝜉′: 𝑗′𝑚′|𝑇𝑞
(𝑘)
|𝜉; 𝑗𝑚〉 with various combinations of 

𝑚′, 𝑚 and 𝑞′it is sufficient to know just one of these combinations; all others 

can be geometrically related because they are proportional to the Clebsch-

Gordan coefficients, which are predetermined and well-known. The common 

proportionality factor is 〈𝜉′𝑗′‖𝑇 
(𝑘)‖𝜉𝑗〉, which does not refer whatsoever to 

the geometric features. There are different conventions for the reduced matrix 

elements. One convention includes an additional phase and normalization. 

The factor with the aid of the 6𝑗 symbol [20, 22 ] 

〈𝜉′: 𝑗′𝑚′|𝑇𝑞
(𝑘)
|𝜉; 𝑗𝑚〉 = (−1)𝑗−𝑚 {

𝑗 ՛ 𝑘 𝑗

−𝑚′ 𝑞 𝑚
} 〈𝜉′𝑗′‖𝑇 

(𝑘)‖𝜉𝑗〉 .  
(14) 

2.4 Gamow –Teller and Fermi matrix element 

In the beginning, let us review the scales of 𝛽-decay we need for evaluating 

the transition matrices. They are as follows: 

 

1. Nuclear scale, where the  𝛽−-decay is due to the following nuclear decay:  

 

X𝑁 + 𝑒
− → Y𝑁+1 + 𝑒

+ + �̅�𝑒 𝑍−1
𝐴

𝑍
𝐴 , 

 

(15) 

 

2. Quark scale: According to the standard model the 𝛽−-decay is attributed 

to the weak flavor symmetry down 𝑑 and up 𝑢 quarks, according to  

𝑢 → 𝑑 + 𝑒 + �̅�𝑒 , (16) 

3. Nucleon scale: The 𝛽−-decay is due to the decay of a free (or quasi-free) 

neutron,  

𝑛 → 𝑝 + 𝑒 + 𝜈𝑒 . (17) 

For nucleon scale 𝛽−-decay, we denote the proton using index a or f, and the 

neutron using index b or i. Whereas for 𝛽+-decay, we denote the neutron 

using index a or f, and the proton using index b or i. 

Fermi matrix element ℳ𝐹 [ 32 ] and Gamow-Teller (GT) matrix element 

ℳ𝐺𝑇  [ 42 ] are the most important values that need to be calculated using the 

initial and final nuclear wave function which carries the nuclear structure 
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information. Fermi operator is just the unit operator 1̂. GT operator is the 

Pauli spin operator �̂�. 

The Gamow-Teller and Fermi can be written as [8]: 

ℳ𝐹 = ⟨𝜉𝑓𝐽𝑓‖1̂‖𝜉𝑖𝐽𝑖⟩ = 𝛿𝐽𝑖𝐽𝑓 ∑ ℳ𝐹(𝑓𝑖)𝑎.𝑏 ⟨𝜉𝑓𝐽𝑓 ‖[𝑐𝑓
†�̃�𝑖]

∆𝐽=0
‖𝜉𝑖𝐽𝑖⟩, 

(18) 

and  

ℳ𝐺𝑇 = ⟨𝜉𝑓𝐽𝑓‖�̂�‖𝜉𝑖𝐽𝑖⟩ = ∑ ℳ𝐺𝑇(𝑓𝑖)𝑎.𝑏 ⟨𝜉𝑓𝐽𝑓 ‖[𝑐𝑓
†�̃�𝑖]

∆𝐽=1
‖𝜉𝑖𝐽𝑖⟩  , 

(19) 

Where 𝑀𝐺𝑇(𝑓𝑖) and 𝑀𝐹(𝑓𝑖) are the single–particle matrix for GT and Fermi 

respectively. They can be written as [20, 22 ]  

ℳ𝐹(𝑓𝑖)   = ⟨𝑓‖1̂‖𝑖⟩ =  𝛿𝑓𝑖𝑗𝑓 = ⟨𝑛𝑓𝑙𝑓𝑗𝑓‖1̂‖𝑛𝑖𝑙𝑖𝑗𝑖⟩,

= 𝛿𝑛𝑓𝑛𝑖𝛿𝑙𝑓𝑙𝑖𝛿𝑗𝑓𝑗𝑖𝑗�̂�. 

 

(20) 

ℳ𝐺𝑇(𝑓𝑖)   =
1

√3
⟨𝑓‖�̂�‖𝑖⟩ =

1

√3
⟨𝑛𝑓𝑙𝑓𝑗𝑓‖�̂�‖𝑛𝑖𝑙𝑖𝑗𝑖⟩, 

=
1

√3
√
3

2
× 2𝛿𝑛𝑓𝑛𝑖𝛿𝑙𝑓𝑙𝑖𝛿𝑗𝑓𝑗𝑖𝑗�̂�𝑗�̂� (−1)

𝑙𝑓+𝑙𝑖+
3
2 {

1

2

1

2
1

𝑗𝑓 𝑗𝑖 𝑙𝑓

}, 

         = √2 𝛿𝑛𝑓𝑛𝑖𝛿𝑙𝑓𝑙𝑖𝛿𝑗𝑓𝑗𝑖𝑗�̂�𝑗�̂�  (−1)
𝑙𝑓+𝑙𝑖+

3

2 {

1

2

1

2
1

𝑗𝑓 𝑗𝑖 𝑙𝑓
}  . 

(21) 

2.5 Phase-space factors 

The half-life contains the integrated leptonic phase space which is called a 

phase space factor 𝑓0. Some references call it Fermi integral. For 𝛽± -decay, 

the phase-space factors are [7] 

𝑓0 = ∫ 𝐹0(∓𝑍𝑓
𝐸0

0
. 𝜀)𝑝𝜀(𝐸0 − 𝜀)

2𝑑𝜀, (22) 

𝐹0 is the Fermi function. 𝜀 is the energy ratio given by: 

 

𝜀 =
𝐸𝑒
𝑚𝑒𝑐

2
, 

(23) 

where 𝐸0 is the total energy of the emitted electron or positron. 𝐸0 denotes the 

nuclear energy difference: 
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𝐸0 =
𝐸𝑖 − 𝐸𝑓
𝑚𝑒𝑐

2
, 

(24) 

where 𝐸𝑖 and 𝐸𝑓 are the initial and final energy, respectively, for the nuclear 

state. The momentum is given by:  

𝑝 = √𝜀2 − 1 , (25) 

For electron capture the phase-space factor is [7]: 

𝑓0
(𝐸𝐶) = 2𝜋(𝛼𝑍𝑖)

3(𝜀0 + 𝐸0)
2, (26) 

where: 

𝜀0 =
𝑚𝑒𝑐

2−𝐵

𝑚𝑒𝑐
2 ≈ 1 −

1

2
(𝛼𝑍𝑖)

2, (27) 

where  

𝛼 =
𝑒2/4𝜋𝜖0
ℏ𝑐

=
1

137
. 

(28) 

We can expand the phase-space factor [7, 52 ]: 

𝑓0
(±) ≈

1

30
(𝐸0
5 − 10𝐸0

2 + 15𝐸0 − 6)𝐹0
(𝑃𝑅)(±)

(∓𝑍𝑓) . (29) 

2.6 𝜷-decay Q-Values  

The Q-values for any nuclear reaction or decay are given by:  

𝑄 = 𝐾𝑓 + 𝐾𝑖 = 𝐸𝑖 − 𝐸𝑓 , (30) 

Using eq. (24), For 𝛽−-decay we have  

𝐸0 =
𝑄𝛽− +𝑚𝑒𝑐

2

𝑚𝑒𝑐
2

, 
(31) 

For 𝛽+-decay we have 

𝐸0 =
𝑄𝛽+ +𝑚𝑒𝑐

2

𝑚𝑒𝑐
2

, 
(32) 

Finally, for EC 

𝐸0 =
𝑄𝐸𝐶 −𝑚𝑒𝑐

2

𝑚𝑒𝑐
2

 , 
(33) 

The Q-values for all decay are listed in [7]. The table of nuclides and represent 

the endpoint energy of the decay. The decay half-life can be calculated 

directly once the one-body transition densities. 
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〈𝜉𝑓𝐽𝑓‖[𝑐𝑎
†�̃�𝑏]‖𝜉𝑖𝐽𝑖〉. (34) 

2.7 Classification of 𝜷-decay 

1. Super allowed transitions 

This takes place for light nuclei such as  where all protons and 

final neutrons are at the Fermi level, result in an overlap in the initial and final 

nuclear wave function. This means that the transitions are of the SP-type and 

yield the maximum value of the F and GT matrix elements. 

2. 𝒍  forbidden allowed transitions                                            

This type occurs in cases where a simple (SP) transition in the mean-field 

shell-model picture, is forbidden by ∆𝑙 = 0. This means the forbiddingness is 

due to a single configuration approximate for 𝜓𝑓 and 𝜓𝑖. using a configuration 

mixing based on the finite value for log 𝑓𝑡 is usually below 5 due to the lack 

of strength in the configuration mixing [ 62 ]. 

3. Unfavorable allowed transitions 

Such transformations do not belong to either of the two types discussed above. 

They are allowed SP transitions in that there is no (𝑙) forbidding. However, 

the SP transitions are suppressed in 𝜓𝑓 and 𝜓𝑖 due to the residual interaction. 

Table 1: Classification of 𝛽-decay transition [27] 

Types of 𝛽-decay 𝑙𝑜𝑔 𝑓𝑡 

Unfavorable allowed 3.8-6.7 

Super allowed 2.9-3.7 

forbidden allowed (𝑙) ≥ 5.0 

1st -forbidden unique 8-10 

1st -forbidden non-unique 6-9 

2nd – forbidden 11-13 

3rd – forbidden 17-19 
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2.8 Operators and Their Matrix Elements 

For a one-body spherical tensor operator , one can derive the following 

formula [28] 

  (35) 

Here 

  

is an annihilation operator with the proper behavior of a spherical tensor of 

rank . The matrix element  is the single-particle transition 

matrix, whereas the matrix element  is the reduced single-particle 

transition matrix. Those matrix elements offer information related to the 

characteristics of the given one-body operator. They completely characterize 

the operator; they have nothing to do with the many-body characteristics of 

the nuclear structure. The many-nucleon structure is probed by the last 

factor , namely  which contains the particle creation and 

annihilation operators. One can imagine that the one-body operator probes 

the nucleus by scattering particles from one single-particle orbital to 

another. To each scattering it attaches an amplitude, the single-particle 

matrix element, characterizing the scattering properties of the operator 

itself. The reduced matrix element of the electromagnetic operator  is:  

  , (36) 

The reduced single-particle matrix element  can be easily 

written for any transitions. 

2.9 Electromagnetic Transitions in Two-Particle and Two-Hole Nuclei 

Let us start from the two-particle nuclei state given in eq (1) as the initial 

state and the final states can be written as 

  (37) 

  (38) 
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here , , , and  are the initial proton-neutron, proton-proton, 

neutron-neutron, initial and final particles. The normalization factor is 

given in eq (14) Using the Wigner–Eckart theorem eq (14) we can write 

the reduced one-body transition density as symbol [20,22]. 

 

Performing contractions in the core expectation value, we have three possible 

contractions permuted to span over four possible terms [29]. For example, 

one of them 

 

All possible contractions for the core expectation value give: 

  

Thus, the reduced one-body transition density becomes: 

 

 

The Clebsch-Gordan coefficients are converted into 3j symbols. The three 3j 

symbols can be summed into a 3j symbol times a 6j symbol [30]. 
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Make use of eq. (36) we reach to the reduced matrix element for two-proton 

and two-neutron nuclei: 

 

 (39) 

This equation is the basis for calculating the decay amplitude of the two-

particle beta decay. 

2.10 Nuclei with two-holes and two-particles 

By producing two particles in the suitable vacuum state, two particles can be 

described as two-particle nuclei inside the notation of occupation number 

(core), similarly the two-hole nuclei are also described using occupation 

number representation by creating two holes into a vacuum. The procedure 

we follow to create the two-particles, or two-holes states is similar to the one 

for one–particle and one–hole nuclei [8]. A coupling of rotational momentum 

is required to explain the two-holes or two-particles nuclear states. 

2.10.1 Two–Particle Nuclei  

We have two nuclear outside the core, the nuclear state of two nuclei a and b 

is written as in [8]. 

We can express the wave function in this case of two-like nucleons a and b 

outside the core as 

|𝑎, 𝑏; 𝐽𝑀⟩ = 𝒩𝑎𝑏(𝐽)∑ ⟨𝑗𝛼𝑚𝛼𝑗𝛼𝛽𝛼|𝐽𝑀⟩𝑐𝛼
†𝑐𝛽
†|𝐶𝑂𝑅𝐸⟩𝑚∝𝑚𝛽

,  
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                = 𝒩𝑎𝑏(𝐽)[𝑐𝑎
†𝑐𝑏
†]
𝐽𝑀
|𝐶𝑂𝑅𝐸⟩,          (40) 

where 

[𝑐𝑎
†𝑐𝑏
†]
𝐽𝑀
= ∑ ⟨𝑗𝛼𝑚𝛼𝑗𝛼𝛽𝛼|𝐽𝑀⟩𝑐𝛼

†𝑐𝛽
†.

𝑚∝𝑚𝛽

 (41) 

The factor  𝒩𝑎𝑏 is the normalization factor [8] 

𝒩𝑎𝑏(𝐽) = √
1 + 𝛿𝑎𝑏(−1)

𝐽

1 + 𝛿𝑎𝑏
  , 

(42) 

Both 𝛼 and 𝛽 are the quantum numbers, signify either proton or neutron 

orbitals. Two identical nucleons in their SP orbitals 𝛼 = 𝑛𝛼𝑙𝛼𝑗𝛼𝑚𝛼, the 

normalization factor 

𝒩𝑎𝑏(𝐽) = {

1 for  𝑎 ≠ 𝑏,
0 for  𝑎 = 𝑏 𝑎𝑛𝑑 𝐽 is odd,
1

√2
for 𝑎 = 𝑏 𝑎𝑛𝑑 𝐽 is even.

  

 

(43) 

Two particle nuclei are always even-even (or doubly even) nuclei. In case of 

neutron and proton outside the core the nuclear state has the from 

|𝑝𝑛; 𝐽𝑀⟩ = [𝑐𝑎
†𝑐𝑏
†]
𝐽𝑀
|𝐶𝑂𝑅𝐸⟩(𝐽) ∑ ⟨𝑗𝑝𝑚𝜋𝑗𝑛𝑚|𝐽𝑀⟩𝑐𝜋

†𝑐
†|𝐶𝑂𝑅𝐸⟩

𝑚𝜋𝑚

 
(44) 

where 𝜋 = (𝑛𝑝𝑙𝑝𝑗𝑝𝑚𝜋) and  = (𝑛𝑛𝑙𝑛𝑗𝑛𝑚). Two-particle nuclei of this type 

are always odd-odd unusual-odd (doubly odd). Those who perform creation 

in (44) or (40) are always anti-commute. From symmetry properties of 

Clebsch-Gordan coefficients, the two particles state inversion relations [ 13 ] 

|𝑏𝑎; 𝐽𝑀⟩ = (−1)𝑗𝑎+𝑗𝑏+𝐽+1|𝑎𝑏; 𝐽𝑀⟩, (45) 

|𝑛𝑝; 𝐽𝑀⟩ = (−1)𝑗𝑏+𝑗𝑛+𝐽+1|𝑝𝑛; 𝐽𝑀⟩.   (46) 

Accordingly, nuclei with the same mass number 𝐴 (isobar), have comparable 

properties, this can be attributed to the fact that the nuclear force is charge 

independent. For example isobars C86
14  and O68

14  have identical properties. 

Another example is the 𝐴 = 6 isobars He  
6 and Li 

6  . 
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Figure 3: Experimental low-energy spectra of the two-particle nuclei He 
6  

and Li 
6 . Energy levels (blue lines) are in keV. The Coulomb energy has been 

subtracted and the isospin quantum numbers of the relevant states are 

displayed. In Li 
6  the 2+ state at 5.366 MeV is unbound. The energy gab 

between the 2+ and 0+ states in 6Li is about 1.8 MeV whereas for 4He the 

energy gab is 1.79 MeV. Taken from International Atomic Energy Agency 

[32]. 

The ground state isospin is given by 

𝑇 =
|𝑁 − 𝑍|

2
 . 

(47) 

Accordingly, 𝑇( He 
6 ) = 1 with 𝐽𝜋 = 0+for the ground state. Whereas 

𝑇( Li 
6 ) = 0 with  𝐽𝜋 = 1+. Both isobars have the core contains only 0𝑠1

2

 thus 

|𝐶𝑂𝑅𝐸⟩ = |𝐶𝑂𝑅𝐸(0𝑠)⟩𝜋 |𝐶𝑂𝑅𝐸(0𝑠)⟩ . 

The nuclear state for He 
6  is thus  

| He 
6 , 0+, 2+⟩ =

1

√2
[𝑐

0𝑝
3

2

†  𝑐
0𝑝

3

2

†
]
0+,2+

|𝐶𝑂𝑅𝐸⟩ , (48) 

The angular moment obeys the of triangular condition  

∆(𝑗1𝑗2𝐽) = |𝑗1 − 𝑗2| ≤ 𝐽 ≤ |𝑗1 + 𝑗2<| → 0 ≤ 𝐽 ≤ 3,   (49) 

Which means  𝐽 = {0,1,2,3}. Hence, 

| Li 
6 , 0+, 1+, 2+, 3+⟩ =

1

√2
[𝑐
𝜋0𝑝

3
2

† 𝑐
0𝑝

3
2

†
]
0+,1+,2+,3+

|𝐶𝑂𝑅𝐸⟩. 
(50) 

We have some important isobars used to study GT strength function C86
14  and 

O68
14  innershell electrons can spend some times inside nucleus and thus there 

is ptobability for an excess proton capture the electron to become a neutron 

in an electronic capture process (EC) according to  
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𝑝1
1 + 𝑒−1

0 → 𝑛0
1 + 𝑒. 

2.10.2 Two-Hole Nuclei 

The wave function of the two-hole nuclei is similar to those two-particle 

nuclei. For two proton holes or two neutron holes we have  

|𝑎−1𝑏−1; 𝐽𝑀⟩ = 𝒩𝑎𝑏(𝐽)[ℎ𝑎
†ℎ𝑏
†]|𝐻𝐹⟩, (51) 

where 𝑎−1and 𝑏−1indicate holes for particles 𝑎 and 𝑏, respectively. The 

normalization factor is given in eq. (43) [11]. It is worth noting that the energy 

level of the |𝐻𝐹⟩ state versus the |𝐶𝑂𝑅𝐸⟩ state, compared to the Fermi energy 

 is as follow 

 (52) 

For example, in one-neutron one-proton hole nucleus, we have  

|𝑝−1𝑛−1; 𝐽𝑀⟩ = [ℎ𝑝
†ℎ𝑛
†]|𝐻𝐹⟩, (53) 

In case of two-neutron-hole or two-proton-hole nuclei. They are always even-

even nuclei. whereas proton-neutron-hole nuclei are always odd-odd. The 

hole-creation operators ℎ𝑎
†
  are anti-commute [33]. odd-odd. Also, there are 

symmetry properties of the Clebsch –Gordan coefficients, given by [34] 

|𝑏−1𝑎−1; 𝐽𝑀⟩ = (−1)𝑗𝑎−1+𝑗𝑏−1+𝐽+1|𝑎−1𝑏−1; 𝐽𝑀⟩ , (54) 

Thus  

  |𝑛−1𝑝−1; 𝐽𝑀⟩ = (−1)
𝑗
𝑝−1

+𝑗
𝑛−1

+𝐽+1
|𝑝−1𝑛−1; 𝐽𝑀⟩. (55) 

Again, the isobars with the neutron-proton-hole have similar nuclear 

properties [35]. 

An important example for EC process is 

Ca1820
38

𝐸𝐶
→ K1919

38 , (56) 

The nuclear state for Ca 
38  and K 

38  are 

  | Ca 
38 ; 0+, 2+⟩ =

1

√2
[ℎ

0𝑑
3
2

† ℎ
0𝑑

3
2

†
]
0+,2+

|𝐻𝐹⟩, 
(57) 

and 

  | K 
38 ; 0+, 1+, 2+, 3+⟩ =

1

√2
[ℎ
𝜋0𝑑

3
2

† ℎ
0𝑑

3
2

†
]
0+,1+,2+,3+

|𝐻𝐹⟩ 
(58) 
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3. Results and discussion 

3.1 Electromagnetic transition in Two – Particle and Two – hole nuclei 

Consider two-particle and two-hole nuclei. The initial and final states in the 

electromagnetic decay process are [36,37] 

|𝜓𝑖⟩  = |𝑎𝑖 𝑏𝑖; 𝐽𝑀⟩ =   𝒩𝑎𝑖𝑏𝑖(𝐽𝑖)[𝑐𝑎𝑖
† 𝑐𝑏𝑖

† ]𝐶𝑂𝑅𝐸⟩, (59) 

|𝜓𝑓⟩ = |𝑎𝑓𝑏𝑓; 𝐽𝑀⟩ = 𝒩𝑎𝑓𝑏𝑓(𝐽𝑓) [𝑐𝑎𝑓
† 𝑐𝑏𝑓

† ] |𝐶𝑂𝑅𝐸⟩, (60) 

|𝜓𝑖⟩ = |𝑎𝑖
−1𝑏𝑖

−1; 𝐽𝑀⟩ = 𝒩𝑎𝑖𝑏𝑖(𝐽𝑖)[ℎ𝑎𝑖
† ℎ𝑏𝑖

† ]|𝐶𝑂𝑅𝐸⟩, (61) 

|𝜓𝑓⟩ = |𝑎𝑓
−1𝑏𝑓

−1; 𝐽𝑀⟩ = 𝒩𝑎𝑓𝑏𝑓(𝐽𝑓) [ℎ𝑎𝑓
† ℎ𝑏𝑓

† ] |𝐶𝑂𝑅𝐸⟩, (62) 

  where 𝑐𝑎𝑓
†  , 𝑐𝑏𝑓

†
 known as the creation final of the particle a and b. 

while 𝑐𝑎𝑖
†  , 𝑐𝑏𝑖

†   known as the creation initial of the particle a and b. 

These equations, with the aid of eq. (39), give the transition amplitude of two 

neutron states to neutron-proton particles due to the β−-decay [36,37] 

ℳ𝐿
(−)
(𝑛𝑖𝑛𝑖

′; 𝐽𝑖 → 𝑝𝑓𝑛𝑓; 𝐽𝑓)  = 𝐿 ̂𝐽𝑖  ̂𝐽𝑓  ̂𝒩𝑛𝑖𝑛𝑖
′  (𝐽𝑖) ×

 [𝛿𝑛𝑖
′𝑛𝑓
(−1)

𝑗𝑝𝑓+𝑗𝑛𝑓+𝐽𝑖+𝐿 {
𝐽𝑖 𝐽𝑓 𝐿

𝑗𝑝𝑓 𝑗𝑛𝑖 𝑗𝑛𝑓
}ℳ (𝑝𝑓𝑛𝑖) +

𝛿𝑛𝑖𝑛𝑓(−1)
𝑗𝑝𝑓+𝑗𝑛𝑖

′+𝐿
{
𝐽𝑖 𝐽𝑓 𝐿

𝑗𝑝𝑓 𝑗𝑛𝑖
′ 𝑗𝑛𝑓

}ℳ (𝑝𝑓𝑛𝑖
′)]  , 

 

 

(63) 

This equation gives the transition amplitude of neutron-proton state to two-

proton state due to the β−-decay 

ℳ𝐿
(−)
(𝑝𝑖𝑛𝑖; 𝐽𝑖 → 𝑝𝑓𝑝𝑓

′ ; 𝐽𝑓)

= �̂�𝑗�̂�𝑗�̂�𝒩𝑝𝑓𝑝𝑓
′ (𝐽𝑖)  

× [𝛿𝑝𝑖𝑝𝑓
′ (−1)

𝑗𝑝𝑓+𝑗𝑛𝑖+𝐿 {
𝐽𝑖 𝐽𝑓 𝐿

𝑗𝑝𝑓 𝑗𝑛𝑖 𝑗𝑝𝑓
′
}ℳ(𝑝𝑓𝑛𝑖)

+ 𝛿𝑝𝑖𝑝𝑓(−1)
𝑗𝑝𝑓+𝑗𝑛𝑖+𝐽𝑓+𝐿 {

𝐽𝑖 𝐽𝑓 𝐿

𝑗𝑝𝑓
′ 𝑗𝑛𝑖 𝑗𝑝𝑓

}ℳ(𝑝𝑓
′ 𝑛𝑖)] . 

 

 

 

 

(64) 
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This equation gives the transition amplitude of two-proton state to neutron-

proton particle state due to the +/EC-decay 

  ℳ𝐿
(+)
(𝑝𝑖𝑝𝑖

′; 𝐽𝑖 → 𝑝𝑓𝑛𝑓; 𝐽𝑓)

= �̂�𝑗�̂�𝑗�̂�𝒩𝑝𝑖𝑝𝑖
′(𝐽𝑖)

× [𝛿𝑝𝑖𝑝𝑓(−1)
𝑗𝑛𝑓+𝑗𝑝𝑓+𝐽𝑓+𝐿 {

𝐽𝑖 𝐽𝑓 𝐿

𝑗𝑛𝑓 𝑗𝑝𝑖
′ 𝑗𝑝𝑓

}ℳ(𝑝𝑖
′𝑛𝑓)

+ 𝛿𝑝𝑖
′𝑝𝑓
(−1)

𝑗𝑝𝑖+𝑗𝑛𝑓+𝐽𝑖+𝐽𝑓+𝐿 {
𝐽𝑖 𝐽𝑓 𝐿

𝑗𝑛𝑓 𝑗𝑝𝑖 𝑗𝑝𝑓
}ℳ(𝑝𝑖𝑛𝑓)] . 

 

 

 

(65) 

This equation gives the transition amplitude of neutron-proton state to 

neutron-neutron particle state due to the +/EC-decay 

  ℳ𝐿
(+)
(𝑝𝑖𝑛𝑖; 𝐽𝑖 → 𝑛𝑓𝑛𝑓

′ ; 𝐽𝑓)

= �̂�𝑗�̂�𝑗�̂�𝒩𝑛𝑓𝑛𝑓
′ (𝐽𝑖)  

× [𝛿𝑛𝑖𝑛𝑓
′ (−1)𝑗𝑝𝑖+𝑗𝑛𝑖+𝐽𝑖+𝐿 {

𝐽𝑖 𝐽𝑓 𝐿

𝑗𝑛𝑓 𝑗𝑝𝑖 𝑗𝑛𝑓
′
}ℳ(𝑝𝑖𝑛𝑓)

+ 𝛿𝑛𝑖𝑛𝑓(−1)
𝑗𝑝𝑖+𝑗𝑛𝑓

′ +𝐽𝑖+𝐽𝑓+𝐿
{
𝐽𝑖 𝐽𝑓 𝐿

𝑗𝑛𝑓
′ 𝑗𝑝𝑖 𝑗𝑛𝑓

}ℳ(𝑝𝑖𝑛𝑓
′ )] . 

 

 

 

(66) 

3.2   The -decay of 6He 

The Beta-decay equation 

He42
6 → Li33

6 + 𝑒− + �̅�𝑒  , (67) 

We can calculate the Q-value: 

𝑄𝛽− = 3.50521 𝑀𝑒𝑉. (68) 

The allowed transition 

𝜈0𝑝3
2
𝜈0𝑝3

2
; 𝐽𝑖 = 0

+  → 𝜋0𝑝3
2
𝜈0𝑝3

2
 
; 𝐽𝑓 = 0

+, 1+, 2+, 3+. (69) 

This is because the allowed total angular momentum quantum number states 

are 

|
3

2
−
3

2
| ≤ 𝐽𝑓 ≤ |

3

2
+
3

2
| → 𝐽𝑓 = 0

+, 1+, 2+, 3+. 

 From fig. (3), the ground state of 6Li is at j = 1+. Thus, the initial state equation 
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|𝑖⟩ = | He 
6 , O+⟩ =

1

√2
[𝑐

0𝑝
3

2

† 𝑐
0𝑝

3

2

†
]
0+
|𝐶𝑂𝑅𝐸⟩ , (70) 

The Final state equation 

|𝑓⟩ = | Li 
6 , 1+⟩ =

1

√2
[𝑐
𝜋0𝑝

3
2

† 𝑐
0𝑝

3
2

†
]
1+

|𝐶𝑂𝑅𝐸⟩ . 
(71) 

This is a Gamow-Teller transition from neutron-neutron to proton-proton 

state. Thus, we use. eq (63) to evaluate the transition amplitude 

ℳ𝐿
− (0𝑝3

2

0𝑝3
2
 
; 𝐽𝑖 = 0

+ → 𝜋0𝑝3
2

0𝑝3
2

; 𝐽𝑓 = 1
+ ) =

�̂�√2 × 0 + 1 √2 × 1 + 1𝒩𝑛𝑖𝑛𝑖
′ [(−1)

3

2
+
3

2
+0+𝐿 {

0 1 𝐿
3

2

3

2

3

2

} (𝜋0𝑝3
2

0𝑝3
2

) +

(−1)
3

2
+
3

2
+𝐿 {

0 1 𝐿
3

2

3

2

3

2

} (𝜋0𝑝3
2

0𝑝3
2

)]   . 

(72) 

ℳ0
(−) = 0 The transition is not allowed for Fermi (𝐿 = 0) due to the 6j-

symbol. The right-hand side of eq. (72) of the decay transition of the Gamow-

Teller 

√3
1

2
𝒩𝑛𝑖𝑛𝑖

′2ℳ𝐺𝑇 (𝜋0𝑝3
2

0𝑝3
2

) = √3
1

2
𝒩𝑛𝑖𝑛𝑖

′2 
2√5

3
=

1

√2

2√5

3
= √

10

3
  . 

(73) 

Using eq (9), the reduced amplitude for the Gamow-Teller transition is 

𝐵𝐺𝑇 =
𝑔𝐴
2

2𝐽𝑖 + 1
|ℳ𝐺𝑇|

2 =
(1.25)2

2 × 0 + 1
|√
10

3
|

2

=
25

16
×
10

3
=
125

24
. 

 

(74) 

The half-life of the phase space factor becomes 

𝑓0𝑡1
2
=



(𝐵𝑓 + 𝐵𝐺𝑇)
=

6147 s

(0 + 5.208)
= 1180.3 s. 

(75) 

The logft value is thus 

𝑙𝑜𝑔𝑓𝑡 = log(1180.3) = 3.07. (76) 

The experimental logft value is 2.9 [32]. The error in logft value is 

𝑒𝑟𝑟𝑜𝑟 =
3.07−2.9

2.9
× 100 = 5%  . (77) 
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The calculated value using the two-particle and hole theory of β−-decay (67) 

agrees with to the experimental value up to 5%. The theory does offer good 

prediction for 6He decay. 

 

Figure 4:  Single particle states for 6He and 6Li. The ground state of 6Li is due 

to proton-neutron 𝜋0𝑝3
2

 0𝑝3
2

 pairing at j = 1+. The first, second and third 

excited states of 6Li in fig.3 is due to proton-neutron 𝜋0𝑝3
2

 0𝑝3
2

 pairing at j = 

3+,0+, and 2+, respectively. 

 

The transition is summarized in fig. 5. The first, the second and the third 

excited states of 6Li, shown in fig.3, is due to proton-neutron 𝜋0𝑝3
2

 0𝑝3
2

 

pairing to j = 3+,0+, and 2+, respectively. 6Li cannot be created at first excited 

state 3+ since it is not allowed by the 6j-symbol in eq. (63). The Q-value is 

not sufficient to create 6Li at the second excited state 0+ via the Fermi 

transition  ( 0𝑝3
2

 0𝑝3
2

, 0+)gs → (𝜋0𝑝3
2

 0𝑝3
2

, 0+ )3.56 MeV . The formation of 

6Li at 2+ state is inhibited by both energy and the 6j-symbol. 
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Figure 5: The transition chart of decay (67). The Q-value is not sufficient to 

create6Li at the second excited state 0+ via the transition ( 0𝑝3
2

 0𝑝3
2

, 0+)gs →

(𝜋0𝑝3
2

 0𝑝3
2

, 0+ )3.56 MeV. Also 6Li cannot be created at first excited state 3+ 

since it is not allowed by the 6j-symbol in eq (63). The formation of 6Li at 2+ 

state is inhibited by both energy and the 6j-symbol. 

3.3 The -decay of 𝐍𝐞 
𝟏𝟖  

The equation of 18Ne decay for + is 

 , (78) 

whereas for EC, the equation of the decay is 

 , (79) 

with the Q-value [32] 

𝑄𝐸𝐶 = 4.44 MeV. (80) 

From single particle states (see figs. 6-9) the decay involves transition of 

proton-proton to proton-neutron state. Thus, according to the theory of two-

particle and two-hole, one need to use eq. (65) to calculate the transition 

amplitudes. We discuss all possible transitions as follow: 

1- The first transition, depicted in fig.6, is 

  |𝑖, 𝜋0𝑑5
2
𝜋0𝑑5

2
, 0+⟩ → |𝑓, 𝜋0𝑑5

2
 0𝑑5

2
 ,  𝐽𝑓 = 0

+, 1+, 2+, 3+, 4+, 5+⟩.  

The transition is shown in fig. (6). The nuclear spin for the ground state is 

and for the first excited state (1.04 MeV)  . The transition 

from the initial state equation | Ne 
18 , 0+⟩𝑔𝑠 to | F 

18 , 1+⟩𝑔𝑠 is Gamow-Teller: 

|𝑖⟩ = | Ne 
18 , 0+⟩𝑔𝑠 =

1

√2
[𝑐𝜋0𝑑5

2

† 𝑐𝜋0𝑑5
2

† ]
0+

|CORE⟩. 
(81) 

+0 0.8067 s 

+
1 

Q = 3.50521 MeV 

He6 Li6 

logftexp = 2.9 

logftth = 3.07 
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The Final state equation 

|𝑓⟩ = | F 
18 , 1+⟩𝑔𝑠 =

1

√2
[𝑐π0d5

2

† 𝑐 0d5
2

† ]
1+

|CORE⟩. 

Using eq. (65), the amplitude of the Gamow-Teller decay transition 

  ℳ𝐿=1
(+)
(𝜋0𝑑5

2
𝜋0𝑑5 

2
 𝐽𝑖 = 0

+ → 𝜋0𝑑5
2
 0𝑑5

2
 𝐽𝑓 = 1

+)

= √3 × 1 × √3 ×
1

√2
× (−1)1 × 2 [√

14

5
× (

1

3√2
)] ,

= −√
14

5
. 

 

 

 

(82) 

Noting that 

  ℳ𝐿=0
(+)
(𝜋0𝑑5

2
𝜋0𝑑5 

2
 𝐽𝑖 = 0

+ → 𝜋0𝑑5
2
 0𝑑5

2
 𝐽𝑓 = 1

+) = 0, 

The transition yields the ground state 18F. Using eq. (9), we obtain the reduced 

Gamow-Teller transition amplitude 

𝐵𝐺𝑇 =
(1.25)2

2 × 0 + 1
|−√

14

5
 |

2

=
25

1
× |− √

14

5
|

2

= 4.375, 

(83) 

and 𝐵𝐹 = 0. Thus the half-life times the phase space factor becomes 

𝑓0𝑡1
2
=



(𝐵𝐹 + 𝐵𝐺𝑇)
=

6147 s

(0 + 4.375)
= 1405.03 s. 

(84) 

From eq. (12) We find, 

𝑙𝑜𝑔𝑓𝑡 = 𝑙𝑜𝑔(1405.03) = 3.15, (85) 

The experimental value for logftexp = 3.1 which makes the deviations 

𝑒𝑟𝑟𝑜𝑟 =
3.15 − 3.1

3.1
× 100 = 1.6%, 

which is an excellent agreement between theory and experiment. 

Let us consider the Fermi transition 

| Ne 
18 , 𝜋0𝑑5

2

𝜋0𝑑5
2

, 0+⟩
𝑔𝑠

→ | F 
18 , 𝜋0𝑑5

2

 0𝑑5
2

 ,  𝐽𝑓 = 0
+⟩
1.042MeV

, 
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corresponds to forming 18F at the first excited state, as shown in fig. (10). 

From eq (65), the Fermi transition dictates that  𝐽𝑖 = 𝐽𝑓  according to the 

selection rule. The Fermi transition amplitude becomes, 

ℳ𝐿=0
(+)
(𝜋0𝑑5

2
𝜋0𝑑5 

2
 𝐽𝑖 = 0

+ → 𝜋0𝑑5
2
 0𝑑5

2
 𝐽𝑓 = 0

+)

=  𝒩𝑝𝑖𝑝𝑖
′

[
 
 
 (−1)

5
2
+
5
2
+0+0 (−

1

√6
) (𝜋0𝑑5

2
 0𝑑5

2
) +

(−1)
5
2
+
5
2
+0+0+0 (−

1

√6
) (𝜋0𝑑5

2
 0𝑑5

2
)
]
 
 
 

         

  

According to equation (20), The Fermi single-particle matrix becomes 

(𝜋0𝑑5
2

 0𝑑5
2

) = √6 , 

Using. eq (65) the amplitude of the Fermi transition 

ℳ𝐿=0
(+)
(𝜋0𝑑5

2

𝜋0𝑑5 
2

 𝐽𝑖 = 0
+ → 𝜋0𝑑5

2

ѵ0𝑑5
2

 𝐽𝑓 = 0
+)  = 1 × 1 × 1 ×

1

√2
×

(−1)1 × 2 [√6 × (−
1

√6
)] = √2 , 

This transition constitutes the transition to the first excited state of 18F. The 

transitions to the final nuclear angular momentum states  𝐽𝑓 =

2+, 3+, 4+, 5+ are not allowed due to selection rule imposed by the 6-j symbol 

in eq. (65). The reduced Fermi transition amplitude is obtained using eq. (8)      

𝐵𝐹 =
(1)2

2×0+1
|√2|

2
= 1 × |√2|

2
= 2, (86) 

The half-life times the phase space factor becomes 

𝑓0𝑡1
2
=



(𝐵𝐹 + 𝐵𝐺𝑇)
=
6147 s

(2 + 0)
= 3073.5 s. 

 

The logft value is thus, 

𝑙𝑜𝑔𝑓𝑡 = 𝑙𝑜𝑔(3073.5) = 3.5 , (87) 

The experimental value of logft = 3.5 [32], the calculated logft values agrees 

exactly with the experiment values for the decay (78) and (79). 
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Figure 6: The First transition of 18Ne to 18F. The change in energy is ∆𝐸 =

5.28 MeV. Allowed by Fermi and Gamow-Teller transitions. 

2- The second transition 

| Ne 
18 , 𝜋0𝑑5

2
𝜋0𝑑5

2
, 0+⟩ → | F 

18 , 𝜋1𝑠1
2
1𝑠1

2
,  𝐽𝑓 = 0

+, 1+⟩. (88) 

This transition is depicted in fig. (7). The amplitude of the transition 

ℳ𝐿=0.1
(+)

(𝜋0𝑑5
2

𝜋0𝑑5 
2

 𝐽𝑖 = 0
+ → 𝜋1𝑠1

2

1𝑠1
2

  𝐽𝑓 = 0
+or 1+) = 0 . 

(89) 

ℳ𝐺𝑇 = 0,ℳ𝐹= 0 i.e. the transitions are inhabited for Fermi and the Gamow-

Teller by single particle matrix. 

 

3- The third transition 

| Ne 
18 , 𝜋0𝑑5

2
𝜋0𝑑5 

2
, 𝐽𝑖 = 0

+⟩ → | F 
18 , 𝜋0𝑑5

2
 0𝑑3

2
,  𝐽𝑓 = 1

+, 2+, 3+, 4+⟩, 

is depicted in fig. (8). Using eq (65) for all possible Jf = 1+, 2+, 3+, and 4+, only 

Jf = 1+ contributes since the 6-j symbol matrix yields zero for Jf > 1+. Note 

that this transition requires energy of 2.214 MeV of the Q-value. Part of the 

remaining energy 4.44 MeV – 2.214 MeV = 2.226 MeV is consumed as 
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Figure7: The second transition of 18Ne to 18F. The change in energy is ∆𝐸 =

2.378MeV. The Fermi and Gamow-Teller amplitudes vanish according 

since the single-particle matrix does not allow the transition. 

an excitation for 18F, presumably the 3.721 MeV 1+ state, shown in fig. (10). 

The initial state equation 

|𝑖⟩ = | Ne 
18 , 0+⟩𝑔𝑠 =

1

√2
[𝑐𝜋0𝑑5

2

† 𝑐𝜋0𝑑5
2

† ]
0+

|𝐶𝑂𝑅𝐸⟩. 
(90) 

The Final state equation 

|𝑓⟩ = | F 
18 , 1+⟩3.721MeV =

1

√2
[𝑐𝜋0𝑑5

2

† 𝑐0𝑑3
2

† ]
1+

|𝐶𝑂𝑅𝐸⟩, 
(91) 

We obtain the amplitude of the transition for Gamow-Teller decay using. eq 

(65),  

ℳ𝐿=1
(+)
(𝜋0𝑑5

2

𝜋0𝑑5 
2

, 𝐽𝑖 = 0
+ → 𝜋0𝑑5

2

 0𝑑3
2

,  𝐽𝑓 = 1
+) =

�̂�√2 × 0 + 1 √2 × 1 + 1 𝒩𝑝𝑖𝑝𝑖
′ [(−1)

3

2
+
5

2
+1+𝐿 {

0 1 𝐿
3

2

5

2

5

2

}

(𝜋0𝑑5
2

0𝑑3
2

) + (−1)
5

2
+
3

2
+0+1+𝐿 {

0 1 𝐿
3

2

5

2

5

2

} (𝜋0𝑑5
2

0𝑑3
2

)]. 

 

     

     

     

     

   

    

     

     

     

     

   

    

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

      

 

     

 

 5 562     

 

 3 184     

 

 2 378     

 

       

 

       



120 
 

The Gamow-Teller transition amplitude becomes 

ℳ𝐿=1
(+)
(𝜋0𝑑5

2

𝜋0𝑑5 
2

 𝐽𝑖 = 0
+ → 𝜋0𝑑5

2

 0𝑑3
2

 𝐽𝑓 = 1
+) =

4

√5
 . (92) 

We end up with 

ℳ𝐺𝑇 =
4

√5
  and  ℳ𝐹 = 0. 

The transition is not allowed for Fermi due to the single particle matrix 

element which prohibits the Fermi transition from 𝜋0𝑑5 
2

→  0𝑑3
2

 since 

 in eq. (20). 

Using the eq (9). We find the reduced for the Gamow-Teller transition, 

𝐵𝐺𝑇 =
(1.25)2

2×0+1
|
4

√5
|
2
=
25

1
× |

4

√5
|
2
= 5.0 , 

(93) 

then we find the half-life to phase space factor 

𝑓0𝑡1
2

=


(𝐵𝐹+𝐵𝐺𝑇)
=
6147 s

(0+5)
= 1229.4 s.  , (94) 

The logft value 

𝑙𝑜𝑔𝑓𝑡 = log(1229.4) = 3.1 . (95) 

No experimental value is available for such a transition. This transition is 

suppressed experimentally due to the relatively high excitation of the 18F 

(3.721 MeV) compared to the Q-value of the decay. 

 

4- The Fourth transition 

| 𝑁𝑒 
18 , 𝜋0𝑑5

2

𝜋0𝑑5
2

, 0+⟩ → | F 
18 , 𝜋0𝑑5

2

1𝑠1
2

,  𝐽𝑓 = 2
+, 3+⟩, (96) 

is depicted in fig. (9). According to eq (65) the amplitude of the transitions to 

 𝐽𝑓 = 2
+, 3+states are prohibited by both the single particle matrix and the 6-

j symbol matrix. Thus 

ℳ𝐿
(+)
(𝜋0𝑑5

2

𝜋0𝑑5 
2

 𝐽𝑖 = 0
+ → 𝜋0𝑑5

2

1𝑠1
2

  𝐽𝑓 = 2
+, 3+) = 0 . (97) 
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Fig. (10) summarizes all possible transitions for decays (78) and (79). Note 

that decay (18Ne, 0.00 MeV, 0+) to (18F, 1.081 MeV, 0-) is not allowed due to 

parity conservation. The Fermi transitions do not violate 

parity, unlike, Gamow-Teller transitions which do not conserve parity. 

Transitions to energy levels higher than or equal to 1.701 MeV of 18F are 

theoretically allowed because they involve Gamow-Teller transitions. 

However, they are forbidden according to the single-particle amplitude since 

they involve transitions from d-subshells to p- and s-subshells. However, the 

s-d shell mixing gives rise to small probability of such transitions as discussed 

next. 

 

 

Figure8: The third transition of 18Ne to 18F.  The change in energy is ∆𝐸 =

2.214 MeV. According to eq. (20), the Fermi transition is not allowed since 

. This transition from 18F at state (1+, 3.721 MeV). 
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Figure9: The fourth transition of 18Ne to 18F.  The change in energy when 

transitioning a proton (𝜋) → proton (𝜋) ∆𝐸 = 1.934 MeV and the change in 

energy when transitioning a proton (𝜋) → neutron ()  ∆𝐸 = 2.378 MeV. 

This transition is prohibited by two selection rules of the single-particle 

transition amplitude and 6j-symbol. 

3.4  s-d Shells Mixing of 𝐅 
𝟏𝟖  

We can assume configuration mixing for s- and d-shell in the 1+ state of F 
18 . 

This is expected because the mean filed states | F 
18 , 𝜋0𝑑5

2

 0𝑑5
2

, 1+⟩ and 

| F 
18 , 𝜋1𝑠1

2

1𝑠1
2

 , 1+⟩ can be mixed due to the narrow energy gap, as depicted 

by fig. (11). The mixing can be expressed by two orthonormal states 

| F 
18  , 1+⟩1 = 𝐴 |𝜋0𝑑5

2
0𝑑5

2
 , 1+⟩ + 𝐵 |𝜋1𝑠1

2
1𝑠1

2
, 1+⟩, (98) 

 

| F 
18  , 1+⟩2 = −𝐵 |𝜋0𝑑5

2
0𝑑5

2
 , 1+⟩ + 𝐴 |𝜋1𝑠1

2
1𝑠1

2
 , 1+⟩, (99) 

  

⟨1+ F 
18 , |1

 1+, F 
18 ⟩1 = ⟨1+ F 

18 , |2
 1+, F 

18 ⟩2 = 𝐴
2 + 𝐵2 = 1 (normalization) 

⟨1+ F 
18 , |1

 1+, F 
18 ⟩2 = 0 − 𝐴𝐵 + 𝐵𝐴 = 0 (orthogonality). 
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Figure10: All possible transitions for the +/EC decays (78) and (79). The 

figure shows the calculated logft values as well as the experimental logft 

values plus the branching ratios of the decays. 

 

Since the transition to s-state is not allowed, we expect that 𝐵 ≪ 𝐴 . The vales 

of A and B is determined by experiment. Both states are due to GT transitions.  

We modify our result such that the nuclear Gamow-Teller transition 

amplitude for the first state 

ℳ𝐺𝑇( Ne, 0+ → 
18 1+, 𝐹 

18 )1 = −√
14

5
𝐴 , 

 

(100)  

and the nuclear Gamow-Teller transition amplitude for the second state 

ℳ𝐺𝑇( Ne, 0+ → 
18 1+, F 

18 )2 = − √
14

5
 (−𝐵) = √

14

5
 𝐵. 

 

(101) 

Hence, the reduced Gamow-Teller transition amplitude for the first and the 

second state are 

𝐵𝐺𝑇(0𝑔𝑠
+ → 1+)1 =

14

5
𝑔𝐴
2𝐴2, (102) 

and 
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𝐵𝐺𝑇(0𝑔𝑠
+ → 1+)2 =

14

5
𝑔𝐴
2𝐵2, (103) 

`are 𝐵𝐺𝑇1 = 4.88  and  𝐵𝐺𝑇2 = 0.245 [38]. Dividing eq. (102) over eq. (103) 

we obtain 

𝐵𝐺𝑇(0𝑔𝑠
+ → 1+)1

𝐵𝐺𝑇(0𝑔𝑠
+ → 1+)2

=
𝐴2

𝐵2
=
4.88

0.245
= 19.9, 

make use of the normalization condition, we obtain the values of the square 

of mixing amplitudes, to be  𝐴2 = 0.952 and 𝐵2 = 0.048. 

Using eq. (98), the first initial state is thus, 

|𝑖⟩1 = | F 
18  , 1+⟩1 = 0.98 |𝜋0𝑑5

2
ѵ0𝑑5

2
 , 1+⟩ + 0.22 |𝜋1𝑠1

2
1𝑠1

2
, 1+⟩, (104) 

whereas, using eq. (99) the second initial state is 

|𝑖⟩2 = | 𝐹 
18  , 1+⟩2 = −0.22 |𝜋0𝑑5

2

0𝑑5
2

 , 1+⟩ + 0.98 |𝜋1𝑠1
2

1𝑠1
2

, 1+⟩.  (105) 

Note that the decay of 18Ne (0+) gs to 18F (1+)2 (the second decay of 18Ne) is 

not allowed as indicated in eq. (88). This is reflected upon the smallness of 

the value of B2. However, this mixing scheme can affect the decay of 18F to 
18O, as shown next. 

Modification is executed to the 2nd transition (88) to account for the small 

amplitude in eq. (103). This transition forms 18F at state (1+, 1.701 MeV). We 

can calculate the reduced amplitude to be 

ℳ𝐺𝑇( Ne, 0gs
+ →

 

18
F 

18 , 11.7
+ )2 = √

14

5
 𝐵. 

 

(106) 

The reduced transition amplitudes are 

𝐵𝐺𝑇 =
(1.25)2

2 × 0 + 1
|√
14

5
 𝐵|

2

=
(1.25)2

1
×
14

5
× 0.048 = 0.21, 

 

(107)  

where as 𝐵𝐹 = 0. This corresponds to f0t1/2 value 

𝑓0𝑡1
2
=



(𝐵𝐹 + 𝐵𝐺𝑇)
=

6147

(0 + 0.21)
= 29271.4, 

(108)  

where the logft value is 
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𝑙𝑜𝑔𝑓𝑡 = 𝑙𝑜𝑔(29271.4) = 4.47 . (109)  

The experimental value is 4.4 which makes the deviations 

𝑒𝑟𝑟𝑜𝑟 =
4.47 − 4.4

4.4
× 100 = 0.16%, 

in an excellent agreement between theory and experiment. The agreement in 

this case is due to the fact that theory is tailored to experiment when use the 

experimental reduced amplitudes derived from experimental decay width 

[32]. 

 

 

Figure 11: The s-d shell mixing of the ground state of 18F. The state 

equations are given in eqs. (104)-(105). 
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3.5 The 𝜷+-decay of 𝐅 
𝟏𝟖  

The equation of decay for 𝛽+ of 18F is: 

F99
18 → O10 + 𝛽

+
8
18 + 𝑒, (110) 

whereas for EC, the equation of the decay is: 

F9 + 𝑒 → O108
18 + 𝑒9

18 , (111) 

With the Q-value 𝑄EC = 1.6559 MeV [32]. Not that O 
18  is formed at the 

ground state since the Q-value is smaller than the first excited state of O 
18  

(1.98 MeV). Make use equation (66), one calculates the transition amplitudes 

using the two-particle and two-hole theory. 

The only transition is ground state F 
18  ( 𝐽𝑖 = 1

+)  to ground state of O 
18  

( 𝐽𝑓 = 0
+).  

| F 
18 , 𝜋 0𝑑5

2

 0𝑑5
2

 ,  𝐽𝑖 = 1
+⟩
𝑔𝑠

→ | O 
18 , 0𝑑5

2

 0𝑑5
2

 ,  𝐽𝑓 = 0
+⟩
𝑔𝑠

. 

The initial state equation 

|𝑖⟩ = | F 
18 , 1+⟩𝑔𝑠 =

1

√2
[𝑐𝜋0𝑑5

2

† 𝑐0𝑑5
2

† ]
1+

|𝐶𝑂𝑅𝐸⟩. 
(112) 

 The Final state equation  

|𝑓⟩ = | O 
18 , 0+⟩𝑔𝑠 =

1

√2
[𝑐0𝑑5

2

† 𝑐0𝑑5
2

† ]
0+

|𝐶𝑂𝑅𝐸⟩. 
(113) 

The transition is from proton-neutron to neutron-neutron; thus, we use. eq 

(66) to find the amplitude of the transition of the Gamow-Teller decay, 

ℳ𝐿=1
(+)
(𝜋0𝑑5

2

 0𝑑5
2

 𝐽𝑖 = 1
+ →  0𝑑5

2

 0𝑑5
2

 𝐽𝑓 = 0
+) = √3 × 1 ×

√3 ×
1

√2
× (−1)7 × [√

14

5
×

1

3√2
] = − √

14

5
  . 

(114) 

We end up with 

ℳ𝐺𝑇
 = −√

14

5
 .  

 

The reduced Gamow-Teller transition amplitudes is calculated using eq. (9), 
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𝐵𝐺𝑇 =
(1.25)2

2×1+1
|−√

14

5
 |

2

= (1.25)2
14

15
= 1.46, 

(115) 

The half-life to phase space factor becomes,   

𝑓0𝑡1
2

=
6147 s

(0+1.46)
= 4215.09 s, (116) 

corresponds to logft value 

𝑙𝑜𝑔𝑓𝑡 = 3.62 . (117) 

The experimental value is 3.6 [32]. The error of 𝑙𝑜𝑔𝑓𝑡 is: 

error =
3.6−3.62

3.6
× 100 = 0.55%. 

The deviation is very small.  Once again, the two-particle two-hole theory 

successfully describes the strength function for the decays (110) and (111).  

The reader must notice that the initial state of 18F in eq. (112) is in fact the 

| F 
18  , 1+⟩1 given in eq. (104). In this case the reduced amplitude (115) is 

composed of two terms, one term has 𝐴2 and the other one has 𝐵2. The 

normalization condition 𝐴2 + 𝐵2 = 1 makes the value of the reduced amplitude 

(115) unaltered. Thus, the mixing does not change the final value of (117). 

3.6 The 𝜷+-decay of Sc 
𝟒𝟐  

The equation of decay for + is: 

Sc2121
42 → Ca20 + 𝛽

+
22
42 + 𝑒, (118) 

whereas for EC, the equation of the decay is: 

Sc2121
42 + 𝑒 → Ca2022

42 + 𝑒 . (119) 

The Q-value 𝑄EC = 6.42629 MeV [32]. 

1. First transition, depicted in fig. (12), is a Fermi transition from proton-

neutron to neutron-neutron state. Thus, we use eq. (66) to calculate the 

transition amplitude 

ℳ𝐿=0
(+)
(𝜋0𝑓7

2

 0𝑓7
2

 𝐽𝑖 = 0
+ →  0𝑓7

2

 0𝑓7
2

 𝐽𝑓 = 0
+) = √2 , 

Using eq. (8), the reduced amplitude for the Fermi transition, 
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𝐵𝐹 =
𝑔𝑉
2

2𝐽𝑖+1
|ℳ𝑓|

2
=

(1.0)2

2×0+1
|√2|

2
= 2, 

(120) 

The half-life of phase space factor to be 

𝑓0𝑡1
2

=


(𝐵𝐹+𝐵𝐺𝑇)
=
6147s

(2+0)
= 3073.5 s, (121) 

Hence the  𝑙𝑜𝑔𝑓𝑡 is 

𝑙𝑜𝑔𝑓𝑡 = 𝑙𝑜𝑔(3073.5) = 3.487. (122) 

The experimental value is 3.5 [32]. The error of 𝑙𝑜𝑔𝑓𝑡 is: 

error =
3.5−3.487

3.5
× 100 = 0.37%. 

The calculated logft value of the EC/β+- decays (118) and (119) of 

transition 1, agrees very well with the experimental value. 

 

2. The second transition, depicted in fig. (13), is a Gamow-Teller. Using eq 

(66) the value of the amplitude is 

ℳ𝐿=1
(+)
(𝜋0𝑓7

2

 0𝑓7
2

 𝐽𝑖 = 0
+ →  0𝑓7

2

 0𝑓5
2

 𝐽𝑓 = 1
+) = 2√

3

7
 , 

Using eq (9) the reduced amplitude for the Gamow-Teller transition, 

𝐵𝐺𝑇 =
(1.25)2

2×0+1
| 2√

3

7
|

2

= 2.678. 
(123)  

The half-life to phase space factor becomes 

𝑓0𝑡1
2
=



(𝐵𝐹 + 𝐵𝐺𝑇)
=

6147 s

(0 + 2.678)
= 2295.369 s, 

(124) 

The  𝑙𝑜𝑔𝑓𝑡 is, 

𝑙𝑜𝑔𝑓𝑡 = 𝑙𝑜𝑔(2295.369) = 3.355, (125) 

According to table (1), the transition is super allowed, however, it is not 

detected experimentally since it requires 2.1 MeV to occur, unlike the first 

transition which releases 5.25 MeV (close the Q-value of the decay). 
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 Figure 12: The first transition of Sc 
42  to Ca 

 42 . The change in energy is 

∆E = 5.252 MeV. 

 

3. Third transition from 42Sc 7+, 0.616 MeV metastable state to 42Ca 6+, 3.189 

MeV excited state. Using. eq (66) the transition amplitude is 

ℳ𝐿
(+)
(𝜋0𝑓7

2
 0𝑓7

2
 𝐽𝑖 = 7

+ →  0𝑓7
2
 0𝑓7

2
 𝐽𝑓 = 6

+) = −√
30

7
 

The transition amplitude is for the Gamow-Teller decay. Using the eq (9), the 

reduced amplitude for the Gamow-Teller transition, 

𝐵𝐺𝑇 =
(1.25)2

2×7+1
|−√

30

7
|
2

= 0.446 , 
(126) 

The half-life to phase space factor becomes 

     

     

     

     

     

   

    

     

     

     

     

     

   

    

 

0  1 2 

   

0  1 2 

 

0  1 2 

 

0  1 2 

 

0  1 2 

 

0  1 2 

 

0  1 2 

 

0  1 2 

 

0  3 2 

 

0  3 2 

 

0  3 2 

 

0  3 2 

 

0  5 2 

 

1  1 2 

 

0  3 2 

 

0  7 2 

 

0  5 2 

 

1  1 2 

 

0  3 2 

 

0  7 2 

 

0  5 2 

 

1  1 2 

 

0  3 2 

 

0  7 2 

  4 577     

 

1  1 2 

 

1  3 2 

 

0  5 2  1 650     

 

0  5 2 

 

1  1 2 

 

0  3 2 

 

0  7 2 

 

1  1 2 

 

1  3 2 

 

0  5 2 

 

2  1 2 

 

0  9 2 

 

1  5 2 

 

2  3 2 

 

2  1 2 

 

1  3 2 

 

1  7 2 

 2 797     2 825     

 

1  5 2 

 

42    

 

42    

 

3  1 2 

 

2  5 2 

  

 

         

 

         

 

 9 829     

 

 2 504     

 

 10 386     

 

 11 682     

 

 10 644     

 

 5 675     



130 
 

𝑓0𝑡1
2

=


(𝐵𝐹+𝐵𝐺𝑇)
=

6147

(0+0.446)
= 13782.5112 , (127) 

The logft values is, 

𝑙𝑜𝑔𝑓𝑡 = 𝑙𝑜𝑔(2295.369) = 4.139, (128)  

The experimental value is 4.2 [32]. The error of 𝑙𝑜𝑔𝑓𝑡 is: 

error =
4.2−4.139

4.139
× 100 = 1.47%. 

The logft value for the EC/β+ transition 3 for the decays (118) and (119), 

calculated using the two-particle and hole theory, agrees very well with the 

experimental value.  

 

 4.Forth transition from 42Sc 7+, 0.616 MeV metastable state to 42Ca 6+, 5.62 

MeV excited state. Using. eq (66), the Gamow-Teller transition amplitude is 

ℳ𝐿=1
(+)
(𝜋0𝑓7

2

 0𝑓7
2

 𝐽𝑖 = 7
+ →  0𝑓7

2

 0𝑓5
2

 𝐽𝑓 = 6
+) = −6√

5

7
 , 

Using eq (9), the reduced amplitude for the Gamow-Teller transition, 

𝐵𝐺𝑇 =
(1.25)2

2×7+1
|−6√

5

7
|

2

= 2.6785 , 
(129) 

The half-life to phase space factor becomes 

𝑓0𝑡1
2

=


(𝐵𝐹+𝐵𝐺𝑇)
=

6147 s

(0+2.6785)
= 2294.9411 s. (130) 

And the logft value is   

𝑙𝑜𝑔𝑓𝑡 = 𝑙𝑜𝑔(2294.9411) = 3.36, (131)  

There is no experimental value for the logft value since this transition forms 
42Ca at excited state close to the Q-value of the decay. 

Fig. (14) summarizes all possible transitions for decays (118) and (119). 
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 Figure 13: The second transition of Sc 

42  to Ca 
 42 . The change in energy is 

∆E = 2.073 MeV. Allowed Gamow-Teller transitions. 

 

Conclusion 

In conclusion, the comprehensive analysis presented in this paper 

demonstrates that the two-particle theory provides a robust framework for 

describing Fermi and Gamow-Teller transitions across a spectrum of light to 

medium even-even and odd-odd nuclei. The empirical evidence and 

theoretical calculations align to affirm the theory’s predictive power and its 

significant role in advancing our understanding of nuclear processes. Tables 

(2)-(5) summarize the calculation data  
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Figure 14: All possible transitions for the +/EC decay (118) and (119). The 

figure shows the calculated logft values as well as the experimental logft 

values plus the decay lifetime. 

 

Table 2: Summary of the calculated 𝛽− -decay logarithm of the strength 

function 𝑙𝑜𝑔 𝑓𝑡 for all allowed transitions using two-particle Theory for the 

decay He42
6 → Li33

6 + 𝑒− + �̅�𝑒 which has 𝑄𝛽− = 3.50521 MeV. 

 

Single Particle 

Transition 

SP transition 

Energy (MeV) 

Nuclear transition Nuclear 

State 

Energy 

(MeV) 

Isospin  𝐥𝐨𝐠𝐟𝐭 𝐥𝐨𝐠𝐟𝐭𝐞𝐱𝐩 

 𝟎𝒑𝟑
𝟐

 𝟎𝒑𝟑
𝟐

→ 𝝅𝟎𝒑𝟑
𝟐

 𝟎𝒑𝟑
𝟐

 

2.221 

 
|〈1+|𝛽𝐺𝑇|0

+〉|=√
10

3
 
−5.975 1 

 

3.07 2.9 

 

Table 3: Summary of the calculated  𝛽+/𝐸𝐶 -decay logarithm of the strength 

function 𝑙𝑜𝑔 𝑓𝑡 for all allowed transitions using two-particle Theory for the 

decay  or which has 𝑄𝐸𝐶 =

4.44𝑀𝑒𝑉. 
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Single Particle Transition SP 

transition 

Energy 

(MeV) 

Nuclear transition Nuclear 

state 

energy 

(MeV) 

Isospin  𝐥𝐨𝐠𝐟𝐭 𝐥𝐨𝐠𝐟𝐭𝐞𝐱𝐩 

𝝅𝟎𝒅𝟓
𝟐

𝝅𝟎𝒅𝟓
𝟐

→ 𝝅𝟎𝒅𝟓
𝟐

 𝟎𝒅𝟓
𝟐

 

 

5.289 
|〈1+|𝛽𝐺𝑇|0

+〉|=− √
14

5
 

 

−8.473 1 3.15 3.1 

𝝅𝟎𝒅𝟓
𝟐

𝝅𝟎𝒅𝟓
𝟐

→ 𝝅𝟎𝒅𝟓
𝟐

 𝟎𝒅𝟓
𝟐

 

 

5.289 |〈0+|𝛽𝐹|0
+〉|=√2 −8.473 1 3.5 3.5 

𝝅𝟎𝒅𝟓
𝟐

𝝅𝟎𝒅𝟓 
𝟐

→ 𝝅𝟏𝒔𝟏
𝟐

 𝟏𝒔𝟏
𝟐

 

2.378 |〈0+|𝛽𝐺𝑇|0
+〉|=0 

 
−5.562 1 0 _ 

𝝅𝟎𝒅𝟓
𝟐

𝝅𝟎𝒅𝟓 
𝟐

→ 𝝅𝟏𝒔𝟏
𝟐

 𝟏𝒔𝟏
𝟐

 

2.378  
|〈1+|𝛽𝐺𝑇|0

+〉| = 0 

−5.562 1 0 _ 

𝝅𝟎𝒅𝟓
𝟐

𝝅𝟎𝒅𝟓 
𝟐

→ 𝝅𝟎𝒅𝟓 
𝟐

 𝟎𝒅𝟑
𝟐

 

2.214 
|〈1+|𝛽𝐺𝑇|0

+〉| =
4

√5
 −0.97 1 3.1 _ 

𝝅𝟎𝒅𝟓
𝟐

𝝅𝟎𝒅𝟓 
𝟐

→ 𝝅𝟎𝒅𝟓 
𝟐

 𝟏𝒔𝟏
𝟐

 

2.378 |〈2+|𝛽𝐺𝑇|0
+〉| = 0 −5.562 1 0 _ 

 

Table 4: Summary of the calculated  𝛽+/𝐸𝐶 -decay logarithm of the strength 

function 𝑙𝑜𝑔 𝑓𝑡 for all allowed transitions using two-particle Theories the 

decay 𝐹99
18 → 𝑂10 + 𝛽

+
8
18 + 𝑒 which has 𝑄𝐸𝐶 = 1.6559𝑀𝑒𝑉. 

 

Single Particle 

Transition 

SP 

transition 

Energy 

(MeV) 

Nuclear transition Nuclear 

State 

Energy 

(MeV) 

Isospin  𝐥𝐨𝐠𝐟𝐭 𝐥𝐨𝐠𝐟𝐭𝐞𝐱𝐩 

 

𝝅𝟎𝒅𝟓
𝟐

 𝟎𝒅𝟓
𝟐

→  𝟎𝒅𝟓
𝟐

 𝟎𝒅𝟓
𝟐

 

 

0.3241 |〈1+|𝛽𝐺𝑇|0
+〉| = −√

14

5
 

 

 

1.98 

 

1 

 

 

3.62 

 

3.6 
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Table 5: Summary of the calculated  𝛽+/𝐸𝐶 -decay logarithm of the strength 

function 𝑙𝑜𝑔 𝑓𝑡 for all allowed transitions using two-particle Theory for the 

decay Sc2121
42 → Ca20 + 𝛽

+
22
42 + e which has  QEC = 6.42629 MeV. 

Single Particle Transition SP 

transition 

Energy 

(MeV) 

Nuclear transition Nuclear 

state energy 

(MeV) 

Isospin  𝐥𝐨𝐠𝐟𝐭 𝐥𝐨𝐠𝐟𝐭𝐞𝐱𝐩 

𝝅𝟎𝒇𝟕
𝟐
 𝟎𝒇𝟕

𝟐

→  𝟎𝒇𝟕
𝟐
 𝟎𝒇𝟕

𝟐
 

5.252 |〈1+|𝛽𝐺𝑇|0
+〉|=0 

|〈0+|𝛽𝐹|0
+〉|=√2 

−9.829 1 3.487 3.5 

𝝅𝟎𝒇𝟕
𝟐
 𝟎𝒇𝟕

𝟐

→  𝟎𝒇𝟕
𝟐
 𝟎𝒇𝟓

𝟐

 

2.073 
|〈1+|𝛽𝐺𝑇|0

+〉|=2√
3

7
 

 

−2.504 1 3.355 _ 
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𝟐
 𝟎𝒇𝟕

𝟐

→  𝟎𝒇𝟕
𝟐
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𝟐
 

2.573 
|〈6+|𝛽𝐺𝑇|7

+〉|=−√
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3.189 0 4.139 4.2 

𝝅𝟎𝒇𝟕
𝟐
 𝟎𝒇𝟕

𝟐

→  𝟎𝒇𝟕
𝟐
 𝟎𝒇𝟓

𝟐

 

5.004 
|〈6+|𝛽𝐺𝑇|0

+〉|=−6√
5

7
 

5.62 1 3.36 _ 
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