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Abstract: 
In this study, we endeavour to prove that K(X, Y)is a structure and  both sufficient to R.D.P .I will check 

that L(X, Y) is conditionally complete or can contain a positive cone. I'm trying to find the conditions that 

make K(X, Y)  a network that has an approximate standard of unity. 
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1. Introduction : 

The connection between partial orderings on a Banach space and dual orderings on the dual space is generally 

recognized. The natural ordering of finite linear operators within partially ordered Banach spaces, however, 

seems to be extremely little understood. We examine the requirements on X and Y to ensure that L(X, Y) is either 

conditionally complete, positively produced, or has a normal positive cone. Ellis ([1]) is credited with generating 

this space in a positive manner, which is uncommon. L(X, Y) is order-unit-normed in this scenario, which 

happens when X is base-normed and Y is order unit-normed. We demonstrate that this outcome cannot be 

enhanced by permitting Y to be approximately –order uninformed, for instance. We deal with compact operators 
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when we restrict our analysis to the scenario where Y is a simplex space. We determine the circumstances under 

which K(X, Y)  must possess the Riesz decomposition property, be positively produced, or have a normal positive 

cone. We also establish conditions under which K(X, Y) is a lattice on X and Y Lastly, we demonstrate that if 

and only if X is base-normed is K(X, Y) approximate-order unit-normed. 

 

2. Definitions and duality : 

𝑋+ is a non-empty subset that: ? 

 (1) 𝑋+ + 𝑋+ ⊆ 𝑋+, and 

(2) 𝜆𝑋+ ⊆ 𝑋+ if 𝜆 ≥ 0. is a segment in the real vector domain X. 

(3) 𝑋+ ∩ (−𝑋+) = {0}as well, then 𝑋+is referred to as a cone. We shall always assume that 𝑋+is closed if 𝑋 is 

a Banach space. If there is a neighborhood base of 0 in 𝑋, which is made up of sets U such that 𝑥, 𝑧 ∈ 𝑈 and 

𝑥 ≤ 𝑦 ≤ 𝑧 together imply that 𝑦 ∈ 𝑈., then in this situation, 𝑋+is called normal. It is obvious that𝑋+ is a cone 

if it is normal. If each x in X can be expressed as 𝑥+ − 𝑥−, 

where 𝑥+, 𝑥− ∈ 𝑋+, then 𝑋+ is generating. 𝑋+is bounded generating if it is generating, which means that if 

M>0, then any 𝑥 ∈ 𝑋 

has a decomposition into positive components with ‖𝑥+‖, ‖𝑥−‖ ≤ 𝑀‖𝑥‖. This is because X is a Banach 

space. We can define a partial preordering on X if and only if 𝑥 − 𝑦 ∈ 𝑋+, provided that 

𝑋+ is a wedge within X. This is a correct partial order if 𝑋+is a cone, meaning that 𝑥 ≥ 𝑦 and 𝑦 ≥ 𝑥 implies 

𝑥 = 𝑦. Let 𝑋∗ represent X's Banach dual. The dual wedge, denoted as  

𝑋+
∗ = {𝑓𝑗 ∈ 𝑋∗: ∑ 𝑓𝑗(𝑥)

𝑗

≥ 0(𝑥 ∈ 𝑋+ )} 

, is a wedge in 𝑋∗ The duality of the normalcy and producing qualities is among the most significant duality 

results. It is possible to make this quite exact. If ‖𝑥‖, ‖𝑧‖ ≤ 1 and 𝑥 ≤ 𝑦 ≤ 𝑧 imply that ‖𝑦‖ ≤ 𝐶, then call 

𝑥+ C-normal. It is also C-generating if, for every 𝑥 ∈ 𝑋, there exist 𝑥+, 𝑥− ∈ 𝑋+ , with 𝑥 = 𝑥+ − 𝑥−and 

‖𝑥+‖ + ‖𝑥−‖ ≤ 𝐶‖𝑥‖. Next, we have: 
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Theorem (2.1): states that if and only if 𝑋+
∗  is C-generating, then 𝑋+ is C-normal. For all 𝜀 > 0, 𝑋+is (𝐶 +

𝜖)-generating if and only if 𝑋+
∗ is C-normal. Grosberg and Krein [2] are credited for the first portion of this 

result, and Ellis [3] for the second. Ng provides a brief proof in [4]. Ellis's result is connected to a number of 

other results. Here are a handful of them. Asimov states that if  𝑥1, 𝑥2, … , 𝑥𝑛 ≥ 0 implies ∑ ‖𝑥𝑖‖
𝑛
1 ≤

(𝜇 + 1)‖∑ 𝑥𝑖
𝑛
1 ‖. 

𝑋then X is (𝜇 + 1, 𝑛)-additive. If ‖𝑥𝑖‖ ≤ 1(1 ≤ 𝑖 ≤ 𝑛) indicates that there exists 𝑦 ≥ 𝑥1, … , 𝑥𝑛𝑛,with‖𝑦‖ ≤

𝜇 + 1,then X is said to be (𝜇 + 1, 𝑛)-directed. If, on the other hand, X is (𝜇 + 1 + 𝜀, 𝑛) −directed for all 𝜀 >
0, then it is approximately (𝜇 + 1, 𝑛)-directed. In [5], the following theorem was demonstrated. 

Theorem (2.2): states that if and only if 𝑋∗ is (𝜇 + 1, 𝑛) additive, then 𝑋∗ is roughly (𝜇 + 1, 𝑛) directed .Ng 

demonstrated the next two findings in [6]. 

Let 𝜇 ≥ 0. Apply the 

Theorem (2.3): Then the following claims are interchangeable. 

(i) 𝑓𝑗 , 𝑔𝑗 ∈ 𝑋∗ and 0 ≤ 𝑔𝑗 ≤ 𝑓𝑗 ⟹ ∑ ‖𝑔𝑗‖𝑗 ≤ (𝜇 + 1) ∑ ‖𝑓𝑗‖𝑗 . 

(ii) 𝑥 ∈ 𝑋 and ‖𝑥‖ < 1 ⟹ there exists 𝑦 ∈ 𝑋 with ‖𝑦‖ < 𝜇 + 1 such that: 𝑦 ≥ 0, 𝑥. 

Theorem (2.4): Let α≥1. Apply the Theorem (2.4). Then the following claims are interchangeable. 

(i) 𝑓𝑗 , 𝑔𝑗 ∈ 𝑋∗ and −𝑓𝑗 ≤ 𝑔𝑗 ≤ 𝑓𝑗 ⟹ ∑ ‖𝑔𝑗‖𝑗 ≤ (𝜇 + 1) ∑ ‖𝑓𝑗‖𝑗  

(ii) 𝑥 ∈ 𝑋 and ‖𝑥‖ < 1 ⟹ there exists 𝑦 ∈ 𝑋 with ‖𝑦‖ < 𝜇 + 1. such that −𝑦 ≤ 𝑥 ≤ 𝑦.  Ather kind of duality 

outcome relates to unique areas. A convex subset B of 𝑋+is a base for 𝑋+ if for every nonzero x∈ 𝑋+, there 

exists a unique representation λb ,for 𝑏 ∈ 𝐵, λ>0.  If X is positively generated, the Minkowski functional of 

co(B∪-B) defines a semi norm on X. If this norm exists in the space X, it is referred to as a base normed 

space. An order unit in X is denoted by 𝑒 ∈ 𝑋+when λ>0 for every 𝑥 ∈  𝑋 and with 𝜆𝑒 ≥ 𝑥 ≥ −𝜆𝑒. 𝑋 with this 

norm is called order-unit-normed when the Minkowski functional of {𝑥 ∶ 𝑒 ≥ 𝑥 ≥ −𝑒} is a norm. If there 
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exists v∈Λ and 𝜇 > −1 with (𝜇 + 1)𝑒𝑣 ≥ 𝑥 ≥ −(𝜇 + 1)𝑒𝑣. Then an approximate order unit in X is an upward 

directed set {𝑒𝜆 ∶ 𝜆 ∈ Λ}in X. X with this norm is called approximate-order-unit-normed if the Minkowski 

functional of {𝑥 ∶ there exists 𝜆 ∈ Λ with 𝑒𝜆 ≥ 𝑥 ≥ 𝑒𝜆} is a norm. 

Theorem (2.5): The ensuing claims are interchangeable. 

(i) 𝑋∗ is base-normed. 

(ii) 𝑋 is approximate-order-unit-normed. 

(iii) 𝑋+ is 1-normal and the open unit ball of 𝑋 is directed upwards. 

Our ultimate goal is to determine the order characteristics of the relevant spaces. Remember that X possesses 

the Riesz decomposition property (R.D.P.) if there are 𝑥1, 𝑥2such that 0 ≤ 𝑥𝑖 ≤ 𝑦𝑖and 𝑥1 + 𝑥2 = 𝑥,whenever 

0 ≤ 𝑦1𝑦2 and 0 ≤ 𝑥 ≤ 𝑦1 + 𝑦2. Alternatively put, 𝑋 possesses the Riesz separation property (R.S.P.) if 𝑢 ∈ 𝑋 

such that 𝑥, 𝑦 ≤ 𝑢 ≤ 𝑣, 𝑤.whenever𝑥, 𝑦 ≤ 𝑢 ≤ 𝑣, 𝑤If there is a least upper Bound for any memorized subset 

of a vector lattice 𝑋 then 𝑋 is said to be complete. 

Let 𝑋 be a partially ordered Banach space with a closed, normal, and generating cone, as stated in. 

Theorem (2.6): The following are therefore comparable. 

(i) 𝑋 has the R.D.P. 

(ii) 𝑋∗ has the R.D.P. 

(iii) 𝑋∗ is a vector lattice. 

(iv) 𝑋∗ is a complete vector lattice. 

(i) ⟹ (ii). This is well known. 
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(iii) ⟹ (iv). Assume that a subset of 𝑋∗, majorized by ℎ0is {𝑓𝑖
𝑗

∶ 𝑖 ∈ 𝐼}. 𝑈(ℎ) = {𝑔𝑖 ∶ ℎ ≥ 𝑔𝑖 ≥ ∑ 𝑓𝑖
𝑗

𝑗 , 𝑖 ∈ 𝐼}, 

let. There is no empty set in 𝑈(ℎ) If ℎ ≥ ∑ 𝑓𝑖
𝑗

𝑗 (𝑖 ∈ 𝐼).According to the cone's definition in 𝑋∗, 𝑈(ℎ) is weak*-

closed. Also take note of the fact that 𝑈(ℎ) is norm-bounded since 𝑋+* is normal and X is positively 

produced.𝑈(ℎ) is hence weak*-compact. Assume: 

𝑈 = ⋂{𝑈(ℎ) ∶ ℎ ≥ ∑ 𝑓𝑖
𝑗

𝑗 }. The family (𝑈(ℎ))
ℎ≥∑ 𝑓𝑖

𝑗
𝑗

 possesses the finite-intersection property because X* is 

a lattice. Given that {𝑓𝑖
𝑗
} is majorized, this family cannot be empty, so each 𝑈(ℎ) must be compact in order for 

𝑈 to be non-empty. For every 𝑖 in 𝐼, ℎ ≥ ∑ 𝑓𝑖
𝑗

𝑗  if h is in 𝑈.In contrast, ℎ ∈ 𝑈 ⊆ 𝑈ℎ′ ≥ ∑ 𝑓𝑖
𝑗

𝑗 (𝑖 ∈ 𝐼), meaning 

that ℎ′ ≥  ℎ. Thus, h is the supremum of {𝑓𝑖
𝑗

∶ 𝑖 ∈ 𝐼}.in X*. 

(iv)⟹(iii)⟹(b). 

This comes after a fortiori. Ando is responsible for the primary implication, (ii) ⟹ (i) [7].X and Y will be 

semi-ordered Banach spaces with closed cones throughout. The Banach space of all bounded linear operators 

with the standard norm from 𝑋 to 𝑌 is denoted as 𝐿(𝑋, 𝑌). This space will always be analyzed using the 

(closed) wedge 𝑊 = {𝑇 ∶ 𝑇𝑥 ∈ 𝑌+{𝑥 ∈ 𝑋+)}. The subspace of all compact operators will be represented by 

𝐾{𝑋, 𝑌), which has the same norm and wedge 𝐾(𝑋, 𝑌) ∩ 𝑊. In order to rule out certain degenerate scenarios, 

we additionally presume that that 𝑋+, 𝑌+ ≠ {0}. 

3. Bounded operators 

The normalcy of 𝐿(𝑋, 𝑌)+ is the first thing we address. 

Theorem (3.1): If and only if X is positively produced and 𝑌+ is normal, 

then 𝐿(𝑋, 𝑌)+is normal. Assume that Y_= is 𝐷-normal and X is C-generated. Since ‖𝑆‖, ‖𝑈‖ ≤ 1. If ‖𝑥‖ ≤ 1, 

. Let 𝑆, 𝑇, 𝑈 ∈ 𝐿(𝑋, 𝑌), 𝑥+, 𝑥− ≥ 0 such that 𝑥 = 𝑥+ − 𝑥− ‖𝑥+‖ + ‖𝑥−‖ ≤ 𝐶. exist if ‖x‖≤1. When ‖𝑇𝑥‖ ≤
‖𝑇𝑥+‖ + ‖𝑇𝑥−‖, we observe that 
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‖𝑇‖ ≤ sup{‖𝑇𝑥+‖ + ‖𝑇𝑥−‖ ∶  𝑥+, 𝑥− ≥ 0, ‖𝑥+‖ + ‖𝑥−‖𝐶} ≤ 𝐶 sup{‖𝑇𝑦‖ ∶ 𝑦 ≥ 0, ‖𝑦‖ ≤ 1}

≤ 𝐶 sup{max{‖𝑆𝑦‖, ‖𝑈𝑦‖} ∶ 𝑦 ≥ 0, ‖𝑦‖ ≤ 1} 

≤ 𝐶𝐷 max{‖𝑆‖, ‖𝑈‖}. 

On the other hand, let's say that 𝐿(𝑋, 𝑌)+ is A-normal. Select 𝑦 ∈ 𝑌+ such that ‖𝑦‖ = 1.Fix 𝐹: 𝑥 ⟼ 𝑓𝑗(𝑥)𝑦 

and so If 𝑓𝑗 , 𝑔𝑗 , ℎ𝑗 ∈ 𝑋∗ and∑ 𝑓𝑗𝑗 ≤ ∑ 𝑔𝑗𝑗 ≤ ∑ ℎ𝑗𝑗 . Given that 𝐹 ≤ 𝐺 ≤ 𝐻,‖𝐺‖ ≤ 𝐴 max{‖𝐹‖, ‖𝐻‖}. 

However, since ∑ ‖𝑓𝑗‖𝑗 = ‖𝐹‖ and so on, 𝑋+
∗  is A-normal. X is hence positively created. allow f be a positive 

bounded linear functional on X, such that 𝑓𝑗(𝑥0) = 1 and allow 𝑥0 ∈ 𝑋+(𝑥 ≠ 0). Since 𝑋+ is closed, such f 

exists. Assume that 𝑠, 𝑡, 𝑢 ∈ 𝑌. Define S as 𝑆 ∶⟼ 𝑓𝑗(𝑥)𝑠, and define T and U in the same way.𝑆 ∶⟼ 𝑓𝑗(𝑥)𝑠, 

‖𝑆‖ = ∑ ‖𝑓𝑗‖𝑗 ‖𝑠‖, and so forth are evident. Now, since ∑ ‖𝑓𝑗‖𝑗 ≠ 0, 𝑌+ must also be A-normal if 𝐿(𝑋, 𝑌)+. 

Now, we examine 𝐿(𝑋, 𝑌)positive generation. It is rare to find situations where the space is positively 

generated. First, we examine a few prerequisites. 

Proposition (3.2): states that𝑋+ is normal and Y is positively generated if 𝐿(𝑋, 𝑌)) is positively generated. 

Let f be a positive bounded linear functional on Y such that 𝑓(𝑦0) = 1and let 𝑦 ∈ 𝑌+ with ‖𝑦0‖ = 1.let𝐺 ∶ 𝑥 ⟼

𝑔𝑗(𝑥)𝑦0.if 𝑔𝑗 ∈ 𝑋∗Given the positive generation of 𝐿 (𝑋, 𝑌), 𝐻 ≥ 𝐺, 0 exists, and 𝐻 ∈ 𝐿(𝑋, 𝑌). H is a positive 

bounded linear functional on X if ℎ(𝑥) = 𝑓𝑗(𝐺(𝑥))  However, since ℎ ≥ 𝑔𝑗, so 𝑋∗ is positively generated, and 

𝑋+ is normal as a result. Let 𝑥0 ∈ 𝑋+ with ‖𝑥0‖ = 1.in order to demonstrate that Y is positively generated. 

Assume that f is a bounded linear functional on X such that :∑ ‖𝑓𝑗‖𝑗 = 1. and 𝑓𝑗(𝑥0) = 1 Let 𝑇 ∶ 𝑥 ⟼ 𝑓𝑗(𝑥)𝑦. 

if y∈Y. We can find 𝑆 ≥ 𝑇, 0since 𝐿(𝑋, 𝑌) is positively produced. Since 𝑧 ≥ 𝑥, 0 if 𝑧 = 𝑆𝑥0, Y is positively 

generated. If the closure of each open subset is open, then a compact Hausdorff space is stonean. When Y=C(Ω) 

and Ω is a stonean space, this is one of the situations in which 𝐿(𝑋, 𝑌) is known to be positively generated 

whenever 𝑋+ is normal. Since C(Ω) is a full vector lattice in this situation (Nakano, [8]), we can benefit from 

the following theorem by Bonsall ([9]). 

Theorem (3.3): Assume that E is a real vector space and that 𝐸+ represents a wedge in it. Assume that Q is 

a super linear map from 𝐸+into V and that P is a sublinear map from E into a   full vector lattice V such that 

𝑄(𝑥) ≤ 𝑃(𝑥)) for any x in 𝐸+Next, there is a linear operator T that maps from E into V in the following ways: 
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𝑇(𝑥) ≤ 𝑃(𝑥)   (𝑥 ∈ 𝐸), 

𝑄(𝑥) ≤ 𝑇(𝑥)   (𝑥 ∈ 𝐸). 

First, we proved the dual of an Asimov [5] result for 𝑌 = 𝑅, which was asserted by Ng [28] without any 

supporting evidence. 

Theorem (3.4): Let Ω be a stonean space. Then, if and only if 𝐿(𝑋, 𝐶(Ω)) is (a, undirected, then X is (𝜇 +

1, 𝑛)-additive. Assume that 𝑇1, … , 𝑇𝑛 ∶ 𝑋 → 𝐶(Ω) all have norms that are less than or equal to 1. In the event 

that 𝑥 ≥ 0452142. Let 𝑄(𝑥) = sup{𝑇1(𝑥1) + 24 ⋯ + 𝑇𝑛(𝑥𝑛) ∶ ∑ 𝑥𝑖
𝑛
𝑖=1 = 𝑥, 𝑥𝑖 ≥ 0} Given that  is clearly 

defined 

∑ 𝑇𝑖(𝑥𝑖)

𝑛

1

= ∑‖𝑇𝑖(𝑥𝑖)‖

𝑛

1

1Ω ≤ ∑‖𝑥𝑖‖

𝑛

1

1Ω ≤ 𝛼 ‖∑ 𝑥𝑖

𝑛

1

‖ 1Ω ≤ 𝛼‖𝑥‖1Ω 

and Q is super linearity on 𝑋+    is evident. Moreover, 𝑄(𝑥) ≤ 𝑃(𝑥) for any 𝑥 ∈ 𝑋+    if 𝑃 is the sublinear map 

defined on 𝑋 mapping 𝑥 𝑡𝑜 (𝜇 + 1)‖𝑥‖ 1𝛺. A linear operator S from X to 𝐶(Ω)such that 𝑆(𝑥) ≥

𝑄(𝑥) (𝑥 ∈ 𝑋+), , 𝑆(𝑥) ≤ 𝑃(𝑥) (𝑥 ∈ 𝑋)exists by Theorem (3.3). 

The formulation of 𝑄 makes it obvious that if 𝑋 ≥ 0 ,and 1 ≤ 𝑖 ≤ 𝑛, then 𝑆(𝑥) ≥ 𝑇𝑖 (x).The implication in 

one direction is proven as ‖S‖≤ 𝜇 + 1. Conversely, let's say that 𝑥1,…, 𝑥𝑛∈𝑋+. 

Assume that 𝑓𝑖 ∈𝑋∗ and that(𝑥𝑖)=‖ 𝑥𝑖 ‖.There is 𝑆 ≥ 𝑇𝑖 (1 ≤ 𝑖 ≤ 𝑛), if 𝑇𝑖 ∶ 𝑥 ⟼ 𝑓𝑖(𝑥)1Ω, and ‖𝑆‖ ≤  𝜇 + 1. 

Nevertheless,  

( 𝜇 + 1) ‖∑ 𝑥𝑖

𝑛

1

‖ 1Ω ≥ 𝑆 (∑ 𝑥𝑖

𝑛

1

) = ∑ 𝑆(𝑥𝑖)

𝑛

1

≥ ∑ 𝑇𝑖(𝑥𝑖)

𝑛

1

= ∑‖𝑥𝑖‖

𝑛

1

1Ω. 

Thus, 𝑋is( 𝜇 + 1, 𝑛)-additive ( 𝜇 + 1)‖∑ 𝑥𝑖
𝑛
1 ‖ ≥ ∑ ‖𝑥𝑖‖𝑛

1 and 𝑋 Similar outcomes to Theorems (2.3) and (2.4) 

can be stonean space. The following are equivalent. Demonstrated. 

Theorem (3.5): Let Ω be a stonean space and  𝜇 ≥ 0These two are interchangeable, for each 

(i) 𝑥, 𝑦 ∈ 𝑋 and 0 ≤ 𝑥 ≤ 𝑦 ⟹ ‖𝑥‖ ≤ (𝜇 + 1)‖𝑦‖. 
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(ii) 𝑆 ≥ 𝑇, 0 with ‖𝑆‖ ≤ 𝜇 + 1 exists if 𝑇 ∈ 𝐿(𝑋, 𝐶(Ω)) and ‖𝑇‖ ≤ 1 

(ii)⟹(i). Bonsall's theorem (Theorem 3.3), which uses 𝑃(𝑥) = (𝜇 + 1)‖𝑇‖ ‖𝑥‖1Ω and 𝑄(𝑥) =

sup{𝑇𝑦 ∶ 0 ≤ 𝑦 ≤ 𝑥}, yields this again. (ii) ⟹(i). To demonstrate this, first observe that if 𝐶(𝛺) = 𝑅, then (i) 

holds with X replaced by 𝑋∗∗.Since   𝑋+ and   𝑋 ⊂ 𝑋∗∗  are closed, 

(i) holds (i.e., the original ordering on X matches the relative ordering as a subspace of 𝑋∗∗).Generally, pick 

𝜔 ∈ Ω,let𝐹 ∶ 𝑥 ⟼ 𝑓𝑗(𝑥)1Ωif f∈ 𝑓𝑗 ∈ 𝑋∗ and ∑ ‖𝑓𝑗‖𝑗 ≤ 1.According to 𝐺 ≥ 𝐹, 0,where ‖𝐺‖ ≤ 𝜇 + 1. If 𝑔𝑗 ∶

𝑥 ⟼ 𝐺(𝑥)(𝜔); then 𝑔𝑗 ∈ 𝑋∗,𝑔𝑗 ≥ 𝑓𝑗 , 0,and ∑ ‖𝑔𝑗‖𝑗 ≤ 𝜇 + 1 

are evident. As a result, (i) is true if R is substituted for 𝐶(Ω). 

Proposition (3.6):Let Ω be a stonean space and 𝜇 ≥ 0. These two are 

interchangeable. For each 

(i) 𝑥, 𝑦 ∈ 𝑋 and −𝑦 ≤ 𝑥 ≤ 𝑦 ⟹ ‖𝑥‖ ≤ 𝜇 + 1 ≤ ‖𝑦‖. 

(ii) 𝑇 ∈ 𝐿(𝑋, 𝐶(Ω)) and ‖𝑇‖ ≤ 1⟹ there exists 𝑆 ≥ 𝑇, −𝑇where ‖𝑆‖ ≤ 𝜇 + 1. 

(i) ⟹ (ii).Using 𝑃(𝑥) = (𝜇 + 1)‖𝑇‖‖𝑥‖1Ω and 

𝑄(𝑥) = sup{𝑇𝑦 ∶ −𝑥 ≤ 𝑦 ≤ 𝑥}., we apply Theorem (3.3). 

(ii)⟹(i). The proof is nearly the same as the one for Theorem (3.5). When either X or Y is finite-dimensional, 

we can demonstrate that 𝐿(𝑋, 𝑌) 

is positively generated. 

Lemma (3.7): Given a finite dimensional real vector space X and a closed, generating cone 𝑋+  

every 𝑃𝑖 induces a lattice ordering on X, and there exist closed generating cones 𝑃1, 𝑃2 such that 𝑃1 ⊆ 𝑋+ ⊆

𝑃2First, note that 𝑋+ must be normal as X is finite-dimensional and 𝑋+is closed. Moreover, 𝑋+ 's interior is not 

empty, giving X an order unit. The basis B of 𝑋+is the same as that of 𝑋∗, B is undoubtedly compact, and if 
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it's w-dimensional, we may identify 𝑛 + 1, affinity independent extreme points in B. These points have an n-

simplex, S, as their convex hull. When 𝑃1 is the (closed) cone with base S, 𝑃1 ⊆ 𝑋+ and 𝑃1 − 𝑃1 = 𝑋.are 

evidently related. Identify𝑃1
∗ ⊆ 𝑋+

∗  closed, generating, And inducing a lattice ordering before attempting to 

identify 𝑃2. 

Let 𝑃2 = 𝑃1
∗ ⊆ 𝑋+

∗∗ = 𝑋+now, where X is identified by 𝑋∗∗). 

𝑃2 induces a lattice ordering on X via Theorem (1.2.8). Since 𝑃2 is obviously closed and generating, the 

outcome is finished. 

Proposition(3.8): 𝐿(𝑋, 𝑌) is positively produced if 𝑋+ is normal and Y is finite-dimensional and positively 

generated. Positive generation of 𝐿(𝑋, 𝑌) with natural ordering occurs if Y is given the order produced by 

 𝑃1However, if 𝑆 ≥ 𝑇, 0 for this ordering, 𝑆 ≥ 𝑇, 0 for the initial ordering as well. As a result, 𝐿(𝑋, 𝑌) 

generates positively as needed. 

Theorem (3.9): States that 𝐿(𝑋, 𝑌) is positively generated if X is finite-dimensional and Y is positively 

produced. Take X and the cone 𝑃2 that contains 𝑋+. This will provide 𝑋+ − 𝑋+,which is built according to in 

Lemma(1.2.15). let𝑥1, … , 𝑥𝑛reside on one extreme ray of 𝑃2if 𝑇 ∶ 𝑋 → 𝑌. Together, they create 𝑃2.Since Y is 

positively generated, for1 ≤ 𝑖 ≤ 𝑛 , 𝑦𝑖 ≥ 𝑇𝑥𝑖, 0.Let 𝑆𝑖 = 𝑦𝑖 

Then, by linearity, extend S to 𝑋+ − 𝑋+ and, in any linear way, to the entirety of 𝑋.For every 𝑥 ∈ 𝑃2,we thus 

have 𝑆𝑥 ≥ 𝑇𝑥, 0 and S is bounded since X is finite-dimensional. However, whenever 𝑥 ∈ 𝑋+, 𝑆𝑥 ≥ 𝑇𝑥, 0 

ensuring that 𝐿(𝑋, 𝑌) is positively generated .If X is base-normed and Y is order-unit-normed, this is another 

scenario in which the space is known to be positively generated 

(Ellis ([1])).𝐿(𝑋, 𝑌) is order-unit-normed in this instance. One may argue that 𝐿(𝑋, 𝑌) would have an 

approximate-order-unit norm if Y were to be assumed to have just an approximate-order-unit norm. We'll 

discover that this isn't feasible. Actually, we have the idea that follows. 

Proposition(3.10): States that the unit ball of B is bounded above if 𝐿(𝑋, 𝑌) is positively produced 

whenever 𝑋 is base-normed. Specifically, if 𝑌+is normal, then an order-unit norm is equal to the norm on Y. 

Assume𝑋1 = 𝑌 × 𝑹 Assign Give 𝑋1 the cone with base {(𝑦, 1) ∶ ‖𝑦‖ ≤ 1}, along with the base norm that goes 
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with it. As the ball of Y has an upper constraint of 2𝜋(0)Because if ‖𝑦‖1, then ‖−𝑦‖  ≤ 1 as well, and we 

have projection of 𝑋 − 𝐿 onto Y, let 𝑇 ∈ 𝐿(𝑋1, 𝑌).Assuming 𝑆 ≥ 𝑇, 0. there exists 𝑆 ∈ 𝐿(𝑋1, 𝑌)Examine the 

map π, which defines  

𝜋𝑦 = 𝑆(𝑦, 1), from the unit ball of Y into Y. Clearly, for every y in Y, 𝜋𝑦 ≥ 𝑦, 0 with 

‖𝑦‖ ≤ 1. π is affine as well. We assert that the unit   

2𝜋(0) = 𝜋(𝑦) + 𝜋(−𝑦) ≥ 𝑦 + 0 = 𝑦. 

In case 𝑌+ is C-normal, the following inclusions are present: Thus, in this situation, the order unit norm 

generated on Y by 2π(0) is identical to the original norm  
{𝑦 ∈ 𝑌 ∶ ‖𝑦‖ ≤ 1} ⊆ {𝑦 ∈ 𝑌 ∶ 2𝜋(0) ≥ 𝑦 ≥ −2𝜋(0)} ⊆ {𝑦 ∈ 𝑌 ∶ ‖𝑦‖ ≤ 2𝐶‖𝜋(0)‖} 

We also own the subsequent dual outcome. 

Proposition (3.11): 

Assume that if X is positively created, then 𝐿(𝑋, 𝑌)is also positively generated if Y is ordered by the unit of 

measurement. In that case, a base norm and the 

norm in 𝑋 are equal. The map map 𝜋 ∶ 𝐿(𝑋, 𝑌∗) → 𝐿(𝑌, 𝑋∗), defined by 

((𝜋𝑇)(𝑦))(𝑥) = (𝑇𝑥)(𝑦), 

is used to illustrate this. is 𝐿(𝑋, 𝑌∗) linear isometry onto 𝐿(𝑌, 𝑋∗) (see, for example, [10]). This map is also an 

order-isomorphism since  

𝜋𝑇 ≥ 0 ⇔ (𝜋𝑇)(𝑦) ≥ 0                      (𝑦 ∈ 𝑌+) 

⇔ ((𝜋𝑇)(𝑦))(𝑥) ≥ 0             (𝑦 ∈ 𝑌+, 𝑥 ∈ 𝑋+) 

⇔ (𝑇𝑥)(𝑦) ≥ 0                        (𝑦 ∈ 𝑌+, 𝑥 ∈ 𝑋+) 

⇔ 𝑇𝑥 ≥ 0                                   (𝑥 ∈ 𝑋+) 

⇔ 𝑇 ≥ 0. 
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Assume for the moment that a base norm and the norm on 𝑋 are not equal. In such case, 𝑋∗ is not equal to a 

space with an order unit norm. As a result, 𝐿(𝑌, 𝑋∗) is not positively produced in base-normed space Y. In 

other words, 𝑌∗ is order-unit-normed, as claimed, but 𝐿(𝑌, 𝑋∗) is not positively generated. These final two 

findings can be summed up as follows.  

Corollary (3.12):Let 𝑋, 𝑌, and W be the classes of partially ordered Banach spaces with generating cones 

that are closed and normal. Let X  1
 represent the class of all such spaces that correspond to base-normed 

spaces, and let Y  ,1
 represent the class of such spaces that correspond to order-unit-normed spaces. Assume 

further that X ⊇ X  1
 and Y ⊇ Y  1

 . 𝐿(𝑋, 𝑌) is positively generated, If 𝑋 ∈ X  1
  and 𝑌 ∈ Y  1

 . 

(ii) 𝑋 = 𝑋  1
  and 𝑌 = 𝑌  1

  if 𝐿(𝑋, 𝑌) is positively generated whenever 𝑋 ∈X   and 𝑌 ∈Y.After discussing the 

spaces 𝑌 such that 𝐿(𝑋, 𝑌)is positively produced whenever 𝑋+ is normal, we wrap up our investigation of the 

positive generation of 𝐿(𝑋, 𝑌).We restrict ourselves to the spaces with normal positive cone in order to have 

some representation of the concerned spaces. Any such Y is unquestionably identical to an order-unit-normed 

space by Proposition (3.10). We know that 𝑌 has this property if 𝑌 is either finite-dimensional or of the form 

𝐶(Ω),where 𝛺 is astonean space, then we know that Y has this feature. But there are additional areas 𝑌 like 

this. To see this, we make use of: 

Example (3.13): Let S be a non-isolated point in an infinite stonean space, S. Given 𝑡, 𝑢 ∈ 𝑆, 

let 𝑆1 = 𝑆 ∪ {𝑡} ∪ {𝑢}.In order to make 𝑆1 stonean, let 𝑈 ⊆ 𝑆1be open if and only if 𝑈 ∩ 𝑆 is open. 

Given 𝑌 = {𝑓𝑗 ∈ 𝐶(𝑆1) ∶ 2𝑓𝑗(𝑠) = 𝑓𝑗(𝑡) + 𝑓𝑗(𝑢)},clarify. Y is not a lattice since s is not isolated, despite 

having the R.D.P. Here is how to define 𝑃 ∶ 𝐶(𝑆1) → 𝑌  

(𝑃𝑓𝑗)(𝑥) = 𝑓𝑗(𝑥) + 𝑓𝑗(𝑡) + 𝑓𝑗(𝑢)   (𝑥 ∈ 𝑆) = 𝑓𝑗(𝑠) + 𝑓𝑗(𝑡) + 𝑓𝑗(𝑢)   (𝑥 = 𝑡 or 𝑥 = 𝑢). 

It is evident that P satisfies every requirement of the lemma, and 𝑃(𝐶(𝑆1)) ⊆ 𝑌. Thus, whenever 𝑋+is 

𝑛, 𝐿(𝑋, 𝑌) is positively produced. If Ω is a compact Hausdorff space and Y is a space C(Ω), then Ω is probably 

stonean if 𝐿(𝑋, 𝑌) is positively generated whenever 𝑋+ is normal. If Ω is metrizable, we can demonstrate this 

fact, as we show below. Though we need evidence, it is likely that if 𝑌 is separable and 𝑌+ is normal, then 𝑌 is 

finite-dimensional if it possesses this characteristic. The example demonstrates that little can be demonstrated, 
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at least in words that are now in use, in the absence of the separability assumption or the assumption that Y is 

a lattice. Presumably, there is a sense in which Y is 'close' to a space C(Ω) with Ω stonean. 

Theorem(3.14):Assume that Y is a separable lattice with normal 𝑌+. Y is finite dimensional if 𝐿(𝑋, 𝑌) is 

positively generated for all 𝑋 with 𝑋+ normal. It is known that Y is equal to a space 𝐶(Ω), where Ω is compact 

and amortizable. If Ω. is not finite, let 𝜔0 ∈ Ω be in the closure of Ω\{𝜔0}. Define an open set sequence as 

follows. 

Since 𝑑(𝜔1, 𝜔0) < 1 and 𝜔1 ≠ 𝜔0, let 𝑈1 = {𝜔 ∈ Ω ∶ 𝑑(𝜔, 𝜔1) < 1

2
𝑑(𝜔0, 𝜔1)}. Select 𝜔𝑛+1 ≠ 𝜔0,such 

that 𝑑(𝜔𝑛+1, 𝜔0) < 1

2
𝑑(𝜔𝑛, 𝜔0), provided that 𝜔𝑛and 𝑈𝑛 are specified. Let 𝑈𝑛+1 = {𝜔 ∈ Ω ∶ 𝑑(𝜔, 𝜔𝑛+1) <

1

2
𝑑(𝜔0, 𝜔𝑛+1)}. The non-empty, open, and disjoint sets 𝑈𝑘 are readily apparent. For any k, 𝜔0 ∈ �̅�𝑘\𝑉𝑘, and 

for 𝑉𝑘 = ⋃ 𝑈4𝑘𝑛+2𝑘−1
∞
𝑛=0 (𝑘 = 0,1, 2, … ), the same holds true. Given 𝑓𝑗 ∈ 𝐶(Ω) and 𝜒𝑘 the characteristic 

function of 𝑉𝑘, let X be the vector space of all bounded real-valued functions defined on Ω of the type 

𝑓𝑗 + ∑ 𝜆𝑘𝜒𝑘

∞

0

 

(pointwise convergence). First, take note that no other element of 𝑋 can be broken down into this form. This is 

because 𝑓𝑗(𝜔0)= 𝑔𝑗(𝜔0))if g is the function and 𝑔𝑗 = 𝑓𝑗 + ∑ 𝜆𝑘𝜒𝑘
∞
0 . Nevertheless, 𝑓𝑗 = 𝑔𝑗 − ∑ 𝜆𝑘𝜒𝑘

∞
0  and 

𝜆𝑘 = lim (𝑔𝑗(ω) − 𝑓𝑗(𝜔0)) as 𝜔 → 𝜔0 in 𝑉𝑘 indicate that 𝑓𝑗and𝜆𝑘are properly defined. Given the supremum 

norm, it can be inferred that X is a Banach space due to the uniqueness of this decomposition. Yes, please 

∑ 𝑔𝑛
𝑗

𝑗 = ∑ 𝑓𝑛
𝑗

𝑗 + ∑ 𝜆𝑘𝜒𝑘
∞
𝑘=0  ,and assume that ∑ ‖𝑔𝑛

𝑗
− 𝑔𝑚

𝑗
‖𝑗 < 𝜀. It follows that 

∑|𝑔𝑛
𝑗

(𝜔0) − 𝑔𝑚
𝑗

(𝜔0)|

𝑗

< 𝜀                                                                (1) 

lim ∑|𝑔𝑛
𝑗
(𝜔) − 𝑔𝑚

𝑗
(𝜔)|

𝑗

< 𝜀   (as 𝜔 → 𝜔0 in 𝑉𝑘)                                   (2) 
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|𝜆𝑘
𝑛 − 𝜆𝑘

𝑚| < 2𝜀                                                                 (3) 

and 

∑‖𝑓𝑛
𝑗

− 𝑓𝑚
𝑗
‖

𝑗

< 3𝜀                                                                     (4) 

Therefore, ∑ (𝑓𝑛
𝑗
)

𝑛=1

∞

𝑗 and(𝜆𝑘
𝑛)𝑛=1

∞  are also Cauchy sequences if ∑ (𝑔𝑛
𝑗
)

𝑛=1

∞

𝑗  is. If the limits of these final two 

are f and λ k, respectively (in 𝐶(Ω)) and R), then the limit of ∑ (𝑔𝑛
𝑗
)

𝑛=1

∞

𝑗 in X is 𝑔𝑗 = 𝑓𝑗 + ∑ 𝜆𝑘𝜒𝑘
∞
0 . Assume 

that 𝑇 ∶  𝑔𝑗 = 𝑓𝑗 + ∑ 𝜆𝑘𝜒𝑘
∞
0 ⟼ 𝑓𝑗  We are aware that T is unambiguously linear and properly defined. 

Moreover, T is bounded for, as we can see from (4) above, where ∑ 𝑔𝑛
𝑗

𝑗 =  𝑔𝑗 and ,∑ 𝑔𝑚
𝑗

=𝑗 0 and 

∑ ‖𝑇𝑔𝑗‖𝑗 = ∑ ‖𝑓𝑗‖𝑗 ≤ 3‖𝑔𝑗‖. 

If 𝐿(𝑋, 𝑌) with 𝑆 ≥ 𝑇, 0 would exist if 𝐿(𝑋, 𝑌) were positively produced. We examine S1.  

𝑆1 ≥ 𝑆(∑ 𝑔𝑛
𝑗

𝑗 ) = ∑ (𝑆𝜒𝑘
)𝑛

0 .                        (5) 

 

holds for every 𝑛. Let ∑ 𝑓𝑘,𝜔
𝑗

𝑗  be any continuous function on Ω such that 0 ≤ ∑ 𝑓𝑘,𝜔
𝑗

𝑗 ≤ ∑ 𝑓𝑘,𝜔
𝑗

𝑗 |E  𝑉𝑘 ≡ 0,, 

and 𝜔 ∈ 𝑉𝑘. The existence of such a function is established by Urysohn's lemma. As 𝑆 ≥ 𝑇, 0, we have 𝜒𝑘 ≥

∑ 𝑓𝑘,𝜔
𝑗

𝑗 ≥ 0. 

𝑆𝜒𝑘
≥ 𝑆 ∑ 𝑓𝑘,𝜔

𝑗

𝑗

≥ 𝑇 ∑ 𝑓𝑘,𝜔
𝑗

𝑗

= ∑ 𝑓𝑘,𝜔
𝑗

𝑗

. 

Specifically, 𝑆𝜒𝑘
(𝜔) ≥ 1 in all cases where 𝜔 ∈ 𝑉𝑘.𝑆𝜒𝑘

(𝜔0) ≥ 1 since 𝑆𝜒𝑘
 is continuous. We thus get 

𝑆1(𝜔0) ≥ 𝑛 + 1 for all n from (5). This is obviously not feasible, and the outcome is established. We examine 

briefly the order structure of 𝐿(𝑋, 𝑌) in the case where 𝑋 and 𝑌 have normal, closed generating cones. If there 
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is a least upper bound for each subset that is bounded above, we will refer to a partially ordered Banach space 

as conditionally complete. We don't take the space to be a lattice. 

Proposition(3.15):Let 𝑋 and 𝑌 have a partial order. Cones that are closed and normal generate Banach 

spaces. The following are therefore comparable. 

(i) The conditional completion of 𝐿(𝑋, 𝑌) is met. (ii) Y is a full vector lattice and X possesses the R.D.P. 

(ii) ⟹ (i). Assume that  
𝑇(𝜇+1) ≤ 𝑇0 ∈ 𝐿(𝑋, 𝑌). 

and that {𝑇(𝜇+1) ∶ 𝜇 + 1 ∈ 𝐴} is a subset of 𝐿(𝑋, 𝑌). 

If 𝑥 ∈ 𝑋+ and 𝑥 = ∑ 𝑥𝑘
𝑛
1  with 𝑥𝑘 ∈ 𝑋+, then 

∑ 𝑇(𝜇+1)𝑘
𝑥𝑘

𝑛

𝑘=1

≤ ∑ 𝑇0𝑥𝑘

𝑛

𝑘=1

= 𝑇0𝑥 

For each (𝜇 + 1)𝑘 ∈ 𝐴,  
∑ 𝑇(𝜇+1)𝑘

𝑥𝑘
𝑛
𝑘=1 ≤ ∑ 𝑇0𝑥𝑘

𝑛
𝑘=1 = 𝑇0𝑥 Thus, the set's supremum 

{∑ 𝑇(𝜇+1)𝑘
𝑥𝑘 ∶

𝑛

𝑘

𝑥 = ∑ 𝑥𝑘

𝑛

𝑘=1

, 𝑥𝑘 ∈ 𝑋+, (𝜇 + 1)𝑘 ∈ 𝐴} 

existing in Y. Use 𝑆𝑥 to indicate this. A classic argument states that the map 

𝑆 ∶ 𝑥 ⟼ 𝑆𝑥 is additive on the positive cone of X since 𝑋 has the R.D.P. S can also be expanded into a linear 

operator that goes from 𝑋 to 𝑌. 𝑆 ≥ 𝑇(𝜇+1), and U≥S if U is any linear operator from X to Y with 𝑈 ≥ 𝑇(𝜇+1), 

are obvious conclusions. It is still to be proven that 𝑆 ∈ 𝐿(𝑋, 𝑌). 

If 𝑥 ≥ 0, then Now (𝑇0 − 𝑇(𝜇+1))𝑥 ≥ (𝑇0 − 𝑆)𝑥 ≥ 0 if 𝑥 ≥ 0. We can write each 𝑥 ∈ 𝑋, with ‖𝑥‖ ≤ 1, 

as𝑥+ − 𝑥− where 𝑥+, 𝑥− ∈ 𝑋+,, and 
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‖𝑥+‖ + ‖𝑥−‖ ≤ 𝐶 since X is C-generating for some 𝐶 > 0. Next, we have  

−𝑥− ≤ 𝑥 ≤ 𝑥+, 

meaning that  

−(𝑇0 − 𝑆)𝑥− ≤ (𝑇0 − 𝑆)𝑥 ≤ (𝑇0 − 𝑆)𝑥+. 

Hence 𝑇0 − 𝑆 ∈ 𝐿(𝑋, 𝑌). But 𝑇0 ∈ 𝐿(𝑋, 𝑌) by assumption, so 𝑆 ∈ 𝐿(𝑋, 𝑌). 

However, 
(𝑇0 − 𝑆)𝑥± ≤ (𝑇0 − 𝑇𝛼)𝑥±, 

is also present, meaning that - 

− (𝑇0 − 𝑇(𝜇+1)𝛼
) 𝑥− ≤ (𝑇0 − 𝑆)𝑥 ≤ (𝑇0 − 𝑆)𝑥+. 

We observe that  
‖(𝑇0 − 𝑆)𝑥‖ ≤ 

𝑃 max{‖(𝑇0 − 𝑇(𝜇+1))𝑥−‖, ‖(𝑇0 − 𝑇(𝜇+1))𝑥+‖} 

≤ 𝐶𝑃‖𝑇0 − 𝑇(𝜇+1)‖. 

since 𝑌 is P-normal for some 𝑃 > 0.𝑇0 − 𝑆 ∈ 𝐿(𝑋, 𝑌)thus resides in 𝐿(𝑋, 𝑌). However, assuming 𝑇0 ∈
𝐿(𝑋, 𝑌), 𝑆 ∈ 𝐿(𝑋, 𝑌). 

(i) ⟹ (ii). It will be sufficient to demonstrate that 𝑌 is conditionally complete 

because it is expected that 𝑌 is positively produced. allow g be a positive bounded linear functional on X such 

that 𝑔𝑗(𝑥0) = 1 and allow 𝑥0 ∈ 𝑋+,‖𝑥0‖ = 1. Let (𝑠𝑖)𝑖∈𝐼 be a family in Y that has t as its upper bound. Define 

𝑆𝑖 ∶ 𝑥 ⟼ 𝑔(𝑥)𝑠𝑖, then define T in the same way.(𝑇 − 𝑆𝑖)𝑥 = (𝑡 − 𝑠𝑖)𝑔𝑗(𝑥) ≥ 0,, meaning that 

𝑇 ≥ 𝑆𝑖 .Assuming that 𝑇0 exists, let it be the supremum of (𝑆𝑖)𝑖∈𝐼 in 𝐿(𝑋, 𝑌). 

𝑇0 ≥ 𝑆𝑖, 𝑇0𝑥0 ≥ 𝑆𝑖𝑥0 = 𝑠𝑖   since 𝑇0 ≥ 𝑆𝑖.Conversely, if 𝑇1 ≥ 𝑆𝑖, 𝑡1 ≥ 𝑠𝑖is defined 



 

59 
 

as 𝑇1 ∶ 𝑥 ⟼ 𝑔𝑗(𝑥)𝑡1Since 𝑡1 = 𝑇1𝑥0 ≥ 𝑇0𝑥0 .The supremum of (𝑠𝑖)𝑖∈𝐼 is therefore 

𝑇0𝑥0.First, note that 𝐿(𝑋, 𝑌) has the R.D.P. in order to demonstrate that 𝑋 possesses it. With(𝑦0) = 1 for 𝑦0 ∈

𝑌+, let f be a bounded positive linear functional on 𝑌. Define 𝐺 ∶ 𝑥 ⟼ 𝑔𝑗(𝑥)𝑦0 if 𝑔𝑗, ℎ ≥ 𝑚, 𝑛 with all these 

elements of 𝑋∗, and so on. Then, 𝐿(𝑋, 𝑌) includes 𝐺, 𝐻 ≥ 𝑀, 𝑁, and. Consequently, 𝐿 ∈ 𝐿(𝑋, 𝑌) exists where 

𝐺, 𝐻 ≥ 𝐿 ≥ 𝑀, 𝑁..When 𝑓𝑗 is used to compose, it is evident that 𝑓𝑗 ∘ 𝐿 ∈ 𝑋∗and that  

𝑔𝑗, ℎ ≥ 𝑓𝑗 ∘ 𝐿 ≥ 𝑚, 𝑛, 

As a result, under Theorem (2.6), X has the R.D.P. since 𝑋∗ has the R.D.P. 

4. Compact operators 

Given the findings of linden Strauss [11], it appears that the most practical range selection for a study of 

compact operators is those whose duals are 𝐿1(𝛼 − 1) spaces. We will assume that the range is a simplex 

space as we are working with partially ordered spaces (Afros, [12] and [13]). 𝑌 will therefore represent a 

simplex space for the remaining values. This space has the supremum norm and natural partial order, and it is 

isometrically order isomorphic to a space of continuous affine functions on a compact simplex 

that vanishes at one extreme point. 𝑌 may be identified with 𝐴0(𝐾)and 𝐾 = {𝑓𝑗 ∈ 𝑌∗ ∶ 𝑓𝑗 ≥ 0, ‖𝑓𝑗‖ ≤ 1} 

is a compact simplex given the weak* topology (the distinguishing extreme point being 0). Obtain the 

following outcome. 

Proposition (4.1): Assume that T is a bounded linear operator from X into 𝐴0(𝐾). and that 𝑋 is a Banach 

space. Then, for the weak* topology of 𝑋∗, there exists an affine map τ from K into 𝑋∗that vanishes at 0 and is 

continuous, so 

(i) (𝑇𝑥)(𝑘) = (𝜏𝑘)(𝑥) (𝑥 ∈ 𝑋, 𝑘 ∈ 𝐾), 

(ii) ‖𝑇‖ = sup{‖𝜏𝑘‖ ∶ 𝑘 ∈ 𝐾}. 
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In contrast, (i) defines a bounded linear operator from X to 𝐴0(𝐾) with norm described by (ii) if such a map τ is given. 

If and only if τ is continuous for the norm topology of 𝑋∗, then T is compact. 𝑇 ≥ 0 if and only if 𝜏 ≥ 0. If 𝑋 is 

partially sorted by a closed cone. With the exception of the final comment, all of these claims are (mostly) 

supported by [14]. One may apply the same reasoning as in the Proposition (3.11) proof. 

Let F be a Frechet space and 𝐾 be a simplex. If the set 

{𝑘 ∈ 𝐾 ∶ Φ(𝑘) ∩ 𝑈 ≠ ∅} is open in 𝐾 whenever U⊆F is open, then a map Φ ∶ 𝐾 → 2𝐹 is called lower semi 

continuous. If Φ(k) is a nonempty convex Set ,and  

𝜆𝛷(𝑘1) + (1 − 𝜆)Φ(𝑘2) ⊆ Φ(𝜆𝑘1 + (1 − 𝜆)𝑘2) 

whenever 𝑘1𝑘2 ∈ 𝐾 and 0 ≤ 𝜆 ≤ 1, then Φ is said to be affine. The subsequent Lazar theorem [15]. 

Theorem (4.2): Let Φ ∶ 𝐾 → 2𝐹  be an affine lower semi continuous map such that 𝛷(𝑘) is closed 

for all 𝑘 ∈ 𝐾. Let F be a Fr'echet space. Then, for every k in K, there exists a continuous affine 

map 𝜑 ∶ 𝐾 → 𝐹 such that 𝜑(𝑘) ∈ Φ(𝑘) via affine continuous selection for 𝛷. 

Proposition (4.3): Assume that 𝑋 is a partially ordered Banach space with a closed cone and that 𝑌 is a 

simplex space. For any 𝜀 > 0, 𝑋+ is (𝐶 + 𝜀)- We limit our analysis to The case where 𝑌 is a simplex space; in 

this instance, the positive generation of 𝐾(𝑋, 𝑌) is satisfied. 

Theorem (4.4): Assume that 𝜇 ≥ 0, X is a partially ordered Banach space with a closed cone. And 

𝑌 is a simplex space. These two are interchangeable. For every 𝑥, 𝑦 ∈ 𝑋 and 0 ≤ 𝑦 ≤ 𝑥 ⟹ ‖𝑦‖ ≤ (𝜇 + 1)‖𝑥‖. If 𝑇 is 

in the set 𝐾(𝑋, 𝑌) and ‖𝑇‖ < 1, then S is in the set 𝐾(𝑋, 𝑌) and 𝑆 ≥ 𝑇, 0and‖𝑆‖ < 𝜇 + 1. Proposition (4.1) 

allows us to associate 𝐴0(𝐾, 𝑋∗) with 𝐾(𝑋, 𝑌)We assume 𝜋 ∈ 𝐴0(𝐾, 𝑋∗)and‖𝜋‖ ≤ 1in 

order to demonstrate that (i)⟹(ii). It is sufficient to demonstrate that 𝜑 ∈ 𝐴0(𝐾, 𝑋∗)with 𝜑 ≥ 𝜋, 0and ‖𝜑‖ ≤

𝜇 + 𝜀 + 1 exists for all 𝜀 > 0. Assume that Φ(0) = {0} and that 
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𝛷(𝑘) = {𝑒 ∈ 𝑋∗ ∶ 𝑒 ≥ 𝜋(𝑘), 0 and ‖𝑒‖ < 𝜇 + 𝜀 + 1}− (𝑘 ≠ 0). For every 𝑘 in 𝐾, it is evident that 𝛷(𝑘) is closed 

and convex. Furthermore, under Theorem (2.3), 𝛷(𝑘) is non-empty. We demonstrate that Φ is lower 

semi continuous and affine. According to Theorem (4.2), 𝛷 will be selected in a continuous affine manner to 

yield the necessary φ. Let x belong to 𝛷(𝑘), 

𝑥′ to 𝛷(𝑘′), and 0 ≤ 𝜆 ≤ 1.𝜆𝑥 + (1 − 𝜆)𝑥′ ≥ 𝜋(𝜆𝑘 + (1 − 𝜆)𝑘′), 0, is unquestionably true, and it is also 

readily apparent that the requirement that the points be limits of comparable points of norm strictly less than 

𝜇 + 𝜀 + 1 is satisfied. Consequently, we may observe that  
 

𝜆Φ(𝑘) + (1 − 𝜆)Φ(𝑘′) ⊆ Φ(λ𝑘 + (1 − λ)𝑘′). 

if 𝜆𝑘 + (1 − 𝜆)𝑘′ ≠ 0.However, as 0 is an extreme point of K, 𝜆𝑘 + (1 − 𝜆)𝑘′ = 0, so the inclusion is still 

valid. Assume 𝑘0 ∈ 𝐾 if, 𝐷 ⊆ 𝐸 is open, and Φ(𝑘0) ∩ 𝐷 ≠ ∅.It is obvious that we may get 

𝑑0 ∈ Φ(𝑘0) ∩ 𝐷 

With ‖𝑑0‖ < 𝜇 + 𝜀 + 1. Assume : {𝑑: ‖𝑑 − 𝑑0‖ < 𝜂} ⊆ 𝐷 and let: ‖𝑑0‖ = (𝜇 + 𝜀 + 1) − 𝛿. 

The open set 

{𝑘 ∈ 𝐾: ‖𝜋(𝑘) − 𝜋(𝑘0)‖ <
1

2
min {𝜂, 𝛿} 𝜇 + 1⁄ } 

is represented by 𝑈.If 𝑘 ∈ 𝑈, then we can find 𝑝 ≥ 𝜋(𝑘) − 𝜋(𝑘0), 0, with 

‖𝑝‖ ≤ (𝜇 + 1)‖𝜋(𝑘) − 𝜋(𝑘0)‖ ≤
1

2
min{𝜂, 𝛿},Since 𝑑 = 𝑑0 + 𝑝 ≥ 𝜋(𝑘), 0 

and 𝑑 ∈ Φ(𝑘) then ‖𝑑‖ ≤ ‖𝑑0‖ + ‖𝑝‖ ≤ 𝜇 + 𝜀 − 1

2
𝛿 + 1.Additionally, 𝑑 ∈ 𝐷 

since ‖𝑑 − 𝑑0‖ ≤ 1

2
𝜂. Now, it is unquestionably true that Φ(𝑘) ∩ 𝐷 ≠ ∅ if 

𝑘 ∈ 𝑈\{0}(𝑘 ∈ 𝑈 if 𝑘0 = 0)and that 𝛷 is lower semi continuous. 
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Select 𝑦0 ∈ 𝑌+with‖𝑦0‖ = 1,and∑ 𝑓0
𝑗

𝑗 ∈ 𝑌+
∗with ∑ ‖𝑓0

𝑗
‖𝑗 = ∑ |𝑓0

𝑗(𝑦0)|𝑗 = 1 

in order to demonstrate the opposite. (because Y is a simplex space, perhaps). Assume 𝑔𝑗 is in 𝑋∗ and 

∑ ‖𝑔𝑗‖𝑗 ≤ 1.In 𝐾(𝑋, 𝑌), 𝐺 ∶ 𝑥 ⟼ 𝑔𝑗(𝑥)𝑦0, and 

‖𝐺‖ = ∑ ‖𝑔𝑗‖𝑗 .There is 𝐻 ∈ 𝐾(𝑋, 𝑌) with 𝐻 ≥ 𝐺, 0 and ‖𝐻‖ ≤ 𝜇 + 𝜀 + 1 for 

any 𝜀 > 0.We obtain ℎ ≥ 𝑔𝑗 , 0,, and ‖ℎ‖ ≤ 𝜇 + 𝜀 + 1 by putting 

ℎ(𝑥) = ∑ 𝑓0
𝑗

𝑗 (𝐻𝑥). 

We now know that (i) holds according to Theorem (3.5). The space 𝐴(𝐾, 𝐸) is positively generated if and only 

if E is positively generated, as demonstrated by Asimov and Atkinson ([1]). Additionally, they demonstrate 

that if 𝐸+is closed, normal, and generating, then 𝐴(𝐾, 𝐸)has the R.D.P. if and only if E possesses this quality. 

This outcome becomes necessary only if E is a lattice, and in that instance, we can provide an easy proof. 

Now, the order structure of 𝐾(𝑋, 𝑌) will be our focus. We derive conditions under which the space has the 

R.D.P. or is a lattice. Assuming that the positive cone in X is closed, normal, and generating, we first address 

the latter scenario. 

Theorem(4.5): Let 𝑌 be a simplex space and let 𝑋 be a partially ordered Banach space with a closed, 

normal, and generating cone. If and only if 𝐾(𝑋, 𝑌) has the R.D.P, then X has the R.D.P. Here, the implication 

in one direction will be served by the demonstration that (i) ⟹ (ii) in Proposition (3.16).Once more, we apply 

Lazar's theorem and Proposition (4.1) to reduce the issue to the space 𝐴0(𝐾, 𝑋∗),If all of them belong to 

𝐴0(𝐾, 𝑋∗),and , all belong to 𝐴0(𝐾, 𝑋∗), and 

Π(𝑘) = {𝑥 ∈ 𝑋∗ ∶ 𝜎(𝑘), 𝜏(𝑘) ≥ 𝑥 ≥ 𝜑(𝑘), 𝜓(𝑘)}, 

thus 𝜎, 𝜏 ≥ 𝜑, 𝜓,and𝜋 ∈ 𝐴0(𝐾, 𝑋∗)^*) will all be satisfied by any continuous affine selection 𝜋 of 𝛱. 

Now, we have to demonstrate that 𝛱 satisfies every requirement of Lazar's theorem. Since 𝑋+
∗  is closed, it is 

evident that Π(𝑘)is non-empty and closed (since 𝑋∗ is a lattice). Let us now assume that 𝑈 is open in 𝑋 and 

that Π(𝑘0) ∩ 𝑈 ≠ ∅, meaning that ∈ 𝑈 has 
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𝜎(𝑘0), 𝜏(𝑘0) ≥ 𝑥 ≥ 𝜑(𝑘0), 𝜓(𝑘0). 

Let : 𝑦(𝑘) = (𝑥 + (𝜎(𝑘) − 𝜎(𝑘0)) ∧ (𝜏(𝑘) − 𝜏(𝑘0))) ∨ 𝜑(𝑘) ∨ 𝜓(𝑘). 

It is obvious.t 𝜎(𝑘), 𝜏(𝑘) ≥ 𝑦(𝑘)𝜑(𝑘), 𝜓(𝑘). It follows that y is a continuous function of k since the positive 

cone in 𝑋+
∗ is normal and generating, allowing the lattice operations and 𝜎, 𝜏, 𝜑,and 𝜓to be continuous. 

Therefore, if 𝑘 is in 𝑁, then 𝑦(𝑘) ∈ 𝑈, and there exists 

a neighborhood 𝑁 of 𝑘0in 𝐾. Since 𝑦(𝑘)unquestionably also belongs to Π(𝑘),the proof is complete and 𝛱 is 

lower semi continuous. Next, we examine the requirements for 𝐾(𝑋, 𝑌) to be a lattice. First, we demonstrate. 

Lemma (4.6):  Let 𝑌 be a lattice with an approximate unit norm. 𝑌 has a supremum for each sparingly 

closed and bounded subset 𝐶, and the set 

𝐶′ = {sup(𝐴) ∶ 𝐴 ⊆ 𝐶}, 

is relatively compactThis lemma has been established in [17] using an order unit for 𝑌.  The lattice operations 

on Y are pointwise operations on the set of extreme points, 𝜕𝑒𝐾, of the set according to Edwards' theorem. 

𝐾 = {𝑓𝑗 ∈ 𝑌∗ ∶ 𝑓𝑗 ≥ 0, ∑‖𝑓𝑗‖

𝑗

≤ 1}, 

and consequently upon its closure. Y is therefore a closed sublattice of 𝐶(𝜕𝑒𝐾). sup(𝐶) 

will exist in 𝐶(𝜕𝑒𝐾)if 𝐶 ⊆ 𝑌 This is located in Y since it is formed in [17] as a limit point 

of finite suprema of elements of C. The second portion is immediately derived from the order-unit case result. 

Corollary (4.7): Assume 𝑌 is a simplex space and 𝑋 is a partially ordered Banach space with closed, 

normal, and generating circles. The following are therefore equivalent. 

(i) A lattice is 𝐾(𝑋, 𝑌). 
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(ii) Y is a lattice, and X possesses the R.D.P. 

(i) ⟹ (ii). The proof for this is identical to that of the implication (a) ⟹ (b) in Proposition (3.16). 

(ii) ⟹ (i). This is proved in [17], using our Lemma (4.7) instead of [17]. 

Using our Lemma (4.7) rather than [17], this is demonstrated in [17]. We examine a specific form of 

𝐾(𝑋, 𝑌).According to [3], if and only if X is base-normed, then this space is order-unit-normed(the proofs of 

both of which hold in this instance). We can extend this conclusion, unlike the situation where we were 

working with bounded operators. 

Theorem (4.8):  Suppose 𝑌 is a simplex space and 𝑋 is a partially ordered Banach space with a dosed cone. 

If and only if 𝑋 is base-normed, then 𝐾(𝑋, 𝑌)has approximate-order-unit average. .𝐾(𝑋, 𝑌)+ is 1-normal, as 

stated in Proposition (4.3).  The open unit ball  of 𝐾(𝑋, 𝑌) is directed, as theorem (4.4) is demonstrated via a 

demonstration remarkably similar to this one.𝐾(𝑋, 𝑌) will therefore have the appropriate form. 

`On the other hand, consider that 𝐾(𝑋, 𝑌)has a norm of approximate order unit. Then, by Proposition (4.3), 

𝑋 is(1 + 𝜀)--generated for any 𝜀 > 0, and 𝐾(𝑋, 𝑌)∗ is base normed. Demonstrating that the norm is additive 

on the non-negative of X is sufficient.𝑝(𝑥) ∶ 𝑇 ⟼ 𝑓𝑗(𝑇𝑥) is a positive linear functional on 𝐾(𝑋, 𝑌) 

of norm ‖x‖ if 𝑓𝑗 ∈ 𝑌+
∗,∑ ‖𝑓𝑗‖𝑗 = 1, and 𝑥 ∈ 𝑋+.Given that 𝐾(𝑋, 𝑌)∗ is base-normed, we 

‖𝑥1‖ + ‖𝑥2‖ = ‖𝑝(𝑥1)‖ + ‖𝑝(𝑥2)‖ = ‖𝑝(𝑥1)‖ + ‖𝑝(𝑥2)‖ = ‖𝑝(𝑥1 + 𝑥2)‖ = ‖𝑥1 + 𝑥2‖ 

whenever 𝑥1, 𝑥2 ∈ 𝑋+. 

5.Result: 

1.  In Corollary (4.7) we have already been able to prove that the two 𝐾(𝑋, 𝑌) and R.D.P are equivalent. 

𝐿(𝑋, 𝑌′) was created in a positive way and 𝑆′ ≥ 𝑇, 0. 

2.   that 𝑌′ ⊆ 𝑌 and that𝑦 ≥ 0 ⟹ 𝑃𝑦 ≥ 𝑦 for any suitable linear map P from Y into 𝑌′.The same is true for 

𝐿(𝑋, 𝑌′) if 𝐿(𝑋, 𝑌) is positively generated whenever 𝑋+ is normal. T can also be thought of as an element of 

𝐿(𝑋, 𝑌) if 𝑇 ∈ 𝐿(𝑋, 𝑌′).For 𝑆 ∈ 𝐿(𝑋, 𝑌), there exists 𝑆 ≥ 𝑇, 0.𝑆′ = 𝑃 ∘ 𝑆 if 𝑆′ ∈ 𝐿(𝑋, 𝑌′).Furthermore, 𝑆′𝑥 =
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𝑃(𝑆𝑥) ≥ 𝑃(𝑇𝑥) ≥ 𝑇𝑥 and 𝑆′𝑥 = 𝑃(𝑆𝑥) ≥ 𝑃(0) = 0 are both true 𝑖𝑓 𝑥 ≥ 0. As a result, 𝐿(𝑋, 𝑌′) is positively 

generated and 𝑆′ ≥ 𝑇, 0. 

Conclusion: 

Reynolds ([18]) states that if 𝑋∗is base-normed and has a weak*-compact base, then 𝑋 is order-unit-normed. 

According to Ellis ([3]). 𝑋 is base-normed if and only if 𝑋∗ has order-unit norm. (Ng ([19])). 
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