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Abstract: The research investigates the dynamics of a resource-consumer mathematical model. 

The model, which consists of differential equations, was previously published by [9]. In this paper, 

we analyze the existence of solutions, provide the numerical solutions, and discuss the dynamics. 

Furthermore, we solve the model for the steady states and confirm the existence of equilibria, which 

have been analyzed. The results indicate that resources and consumers can coexist if we deploy 

enough resources into the population; otherwise, the population collapses. 

Keywords: Food and consumer differential equation model; existence of solutions; analysis of 

steady states 

1. Introduction  

 

Resource-consumer mathematical models are among the most popular models and have been 

examined by many authors theoretically and numerically [1, 2, 3, 4, 5, 6, 7, 8, 9].  A predator-prey 

model with one resource and two consumers is considered by [6]. He et al. [5] discuss the dynamics 

of a consumer-resource model with diffusion. [8] study the influence of spatial memory on the 

solutions of a consumer-resource model. Local stability of equilibria has been discussed by [2] for 

the Daphnia model. Alanazi [1] derives a resource-consumer mathematical model that incorporates 

diffusion coefficients and home ranges to fully understand the impact of diffusion and home ranges 

on the dynamic behavior of the populations.  Leah [4] provides an excellent work discussing 

mathematical models in Biology and the stability of the steady states.  Thieme [9] proposes a 

mathematical model to explore the relations between consumers and food (the resources) on which 

the population lives.  The mathematical model derived by [9] is 

 𝑑𝑉(𝑡)

𝑑𝑡
=  𝜑 − 𝑘 𝑉(𝑡) − 

ℎ

𝑞
 𝑉(𝑡)𝑈(𝑡), 

𝑑𝑈(𝑡)

𝑑𝑡
= ℎ 𝑉(𝑡) 𝑈(𝑡) −  𝑤 𝑈(𝑡), 

 

 

(1.1) 

where 𝑡 > 0, and 𝑘, 𝑞, 𝑤 are positive. 𝑉(𝑡) is the biomass of the resources, while 𝑈(𝑡) describes 

the biomass of the consumers. The food deployed to the population at a constant rate 𝜑.  Also, the 

food degrades at a constant rate 𝑘.  ℎ is the increase in the consumer biomass per unit of time by 

consuming one unit of food biomass.  
1

𝑤
 is the life expectancy of the population 𝑈.  Lastly, the 

amount of food biomass consumed per unit of time by per unit of consumer biomass is 
ℎ

𝑞
. 

 The dynamics of the model (1.1) have not been fully analyzed theoretically and 

numerically. Therefore, this paper aims to understand the dynamics of the model described in (1.1). 

First, we prove the existence of solutions. Second, we show the existence of numerical solutions, 

which provide another helpful understanding of dynamics.  In addition, we solve the model for the 

steady states and confirm the existence of equilibria, which have been discussed.  To investigate 

the model for the steady-state solutions, we first find the corresponding characteristic equation for 
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each equilibrium in the system.   An equilibrium is locally asymptotically stable if all roots of the 

characteristic equation have negative real parts.  In contrast, an equilibrium is unstable if at least 

one root of the characteristic equation has one positive real part.  Finally, the paper provides the 

numerical solutions of the steady states and interprets their meaning. 

Conditions and theorems of stability and linearization provided by Leah [4] are our key 

tools to obtain the main results.  For more numerical experiments and analysis of numerical 

solutions, we suggest the following work [1, 9, 10, 11, 12, 13, 14]. 

The plan of the paper is as follows.  In section 2, the model is introduced and defined along 

with the initial conditions.  Section 3 discussed the existence of solutions.  Numerical solutions of 

the proposed model are found in section 4.  In section 5, we study the steady-state solutions of the 

model.  Section 6 provides a numerical analysis of the steady states.  In Section 7, we summarize 

and discuss the results. 

2. A mathematical model of resources and consumers 

Assume 𝑉 and 𝑈 are the biomass of food resources and the consumer biomass of the population, 

respectively.  Differently than [14], we assume ℎ(𝑡) is a function of time 𝑡. We consider the 

following model [14],  

 𝑑𝑉(𝑡)

𝑑𝑡
=  𝜑 − 𝑘 𝑉(𝑡) − 

ℎ(𝑡)

𝑞
 𝑉(𝑡)𝑈(𝑡), 

𝑑𝑈(𝑡)

𝑑𝑡
= ℎ(𝑡) 𝑉(𝑡) 𝑈(𝑡) −  𝑤 𝑈(𝑡), 

 

 

(2.1) 

where 𝑡 >  0, and 𝑘, 𝑞, 𝑤 are positive constants.  The food deployed to the population at a constant 

rate 𝜑.  Also, the food degrades at a constant rate 𝑘.  ℎ is the increase in the consumer biomass per 

unit of time by consuming one unit of food biomass.  
1

𝑤
 is the life expectancy of the population 𝑈.  

Lastly, the amount of food biomass consumed per unit of time by per unit of consumer biomass is 
ℎ

𝑞
.  We assume the initial conditions are given by 

 𝑉(0) =  �̂�,      𝑈(0) =  𝑈.̂  (2.2) 

 

3. Existence of solutions 

We assume that ℎ(0) = 0, ∫ ℎ(𝑠) 𝑈(𝑠) 𝑑𝑠
∞

0
 <  ∞, and  ∫ ℎ(𝑠) 𝑉(𝑠) 𝑑𝑠

∞

0
 <  ∞. By the first equation 

in (2.1), we have 

 
𝑉′(𝑡) + (𝑘 + 

ℎ(𝑡)

𝑞
 𝑈(𝑡))𝑉(𝑡) =  𝜑. 

 

(3.1) 

We use the integrating factor with 𝛼(𝑡) =  𝑒
𝑘𝑡+ 

1

𝑞
∫ ℎ(𝑟)𝑈(𝑟)𝑑𝑟

𝑡
0  to solve the equation (3.1). Therefore, 

multiplying both sides by 𝛼(𝑡) we get 

 
𝛼(𝑡)𝑉′(𝑡) + 𝛼(𝑡) (𝑘 + 

ℎ(𝑡)

𝑞
 𝑈(𝑡))𝑉(𝑡) = 𝛼(𝑡) 𝜑. 

 

(3.2) 

This leads to 

 
𝑒

𝑘𝑡+ 
1
𝑞 ∫ ℎ(𝑟)𝑈(𝑟)𝑑𝑟

𝑡
0  𝑉′(𝑡) + 𝑒

𝑘𝑡+ 
1
𝑞 ∫ ℎ(𝑟)𝑈(𝑟)𝑑𝑟

𝑡
0 (𝑘 + 

ℎ(𝑡)

𝑞
 𝑈(𝑡))𝑉(𝑡)

= 𝑒
𝑘𝑡+ 

1
𝑞 ∫ ℎ(𝑟)𝑈(𝑟)𝑑𝑟

𝑡
0  𝜑. 

 

(3.3) 
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(3.3) can be reduced to  

 𝑑

𝑑𝑡
( 𝑒

𝑘𝑡+ 
1
𝑞 ∫ ℎ(𝑟)𝑈(𝑟)𝑑𝑟

𝑡
0 𝑉(𝑡)) = 𝑒

𝑘𝑡+ 
1
𝑞 ∫ ℎ(𝑟)𝑈(𝑟)𝑑𝑟

𝑡
0  𝜑. 

 

 

(3.4) 

Integrating both sides gives the following equation 

 
( 𝑒

𝑘𝑡+ 
1
𝑞 ∫ ℎ(𝑟)𝑈(𝑟)𝑑𝑟

𝑡
0 𝑉(𝑡)) =  𝜑 ∫ 𝑒

𝑘𝑡+ 
1
𝑞 ∫ ℎ(𝑟)𝑈(𝑟)𝑑𝑟

𝑠
0

𝑡

0

 𝑑𝑠 +  �̂�. 

 

 

 

 

(3.5) 

Divide both sides by 𝛼(𝑡) =  𝑒
𝑘𝑡+ 

1

𝑞
∫ ℎ(𝑟)𝑈(𝑟)𝑑𝑟

𝑡
0 , we reach to the following expression 

 
𝑉(𝑡) =  𝜑 ∫ 𝑒

−𝑘(𝑡−𝑠)− 
1
𝑞 ∫ ℎ(𝑟)𝑈(𝑟)𝑑𝑟

𝑡
𝑠

𝑡

0

 𝑑𝑠 +  �̂�𝑒
−𝑘𝑡− 

1
𝑞 ∫ ℎ(𝑟)𝑈(𝑟)𝑑𝑟

𝑡
0 . 

 

(3.6) 

Also, by the second equation in (2.1), we have 

 𝑈′(𝑡) + (𝑤 − ℎ(𝑡) 𝑉(𝑡))𝑈(𝑡) =  0. (3.7) 

We use the integrating factor with 𝛽(𝑡) =  𝑒𝑤𝑡− ∫ ℎ(𝑟) 𝑉(𝑟)𝑑𝑟
𝑡
0 ,  to solve the equation (3.7). 

Multiplying both sides by 𝛽(𝑡), we get 

 𝛽(𝑡)𝑈′(𝑡) + 𝛽(𝑡)(𝑤 − ℎ(𝑡)𝑉(𝑡))𝑈(𝑡) =  0, (3.8) 

which can be rewritten as 

 𝑑

𝑑𝑡
( 𝛽(𝑡)𝑈(𝑡)) = 0. 

(3.9) 

Integrating (3.9) gives the following equation 

 (𝛽(𝑡)𝑈(𝑡) − �̂�) = 0. (3.10) 

The latter equals 

 𝑈(𝑡) = �̂� 𝛽−1(𝑡). 
 

(3.11) 

By (3.6) and (3.11), the solutions are bounded as 𝑡 → ∞  provided that the solutions exist. 

4. Analysis of the steady-state solutions 

This section uses the model in (2.1) to analyze the steady-state solutions by assuming ℎ is a constant.  

The model (2.1) can be rewritten as 
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 𝑑𝑉(𝑡)

𝑑𝑡
=  𝜑 − 𝑘 𝑉(𝑡) − 

ℎ

𝑞
 𝑉(𝑡)𝑈(𝑡) =: 𝐹(𝑉, 𝑈), 

𝑑𝑈(𝑡)

𝑑𝑡
= ℎ 𝑉(𝑡) 𝑈(𝑡) −  𝑤 𝑈(𝑡) =:𝐺(𝑉, 𝑈), 

 

 

(4.1) 

where 𝑡 > 0, and 𝑘, 𝑞, 𝑤 are positive constants. 

4.1 The steady states solutions 

To solve for the steady state solution, we set 
𝑑𝑉(𝑡)

𝑑𝑡
=  0,  and 

𝑑𝑈(𝑡)

𝑑𝑡
=  0,  i.e., by solving the 

following system 

  𝜑 − 𝑘 𝑉(𝑡) − 
ℎ

𝑞
 𝑉(𝑡)𝑈(𝑡) = 0, 

ℎ 𝑉(𝑡) 𝑈(𝑡) −  𝑤 𝑈(𝑡) = 0. 

 

 

(4.3) 

The system (4.3) has three equilibrium points.  Clearly, 𝐸1 = (𝑉1, 𝑈1) =  (0, 0)  is the first 

equilibrium point. The second equilibrium point is 𝐸2 = (𝑉2, 𝑈2) =  (
𝜑

𝑘
, 0). 

We can find the third equilibrium point as follows: From the second equation in (4.3), we have  

𝑉(𝑥, 𝑡) =
𝑤

ℎ
. Therefore, the first equation in (4.3) provides 𝑈(𝑥, 𝑡) =  

𝑞𝜑

𝑤
+ 

𝑘𝑞

ℎ
. We conclude that 

the third equilibrium point is 𝐸3 = (𝑉3, 𝑈3) =  (
𝑤

ℎ
,
𝑞𝜑

𝑤
+ 

𝑘𝑞

ℎ
 ). 

 

4.2 The stability of the steady states 

The Jacobian of the model (4.1) is 

  

𝐽𝑖 =

[
 
 
 
 
𝑑𝐹

𝑑𝑉𝑖

𝑑𝐹

𝑑𝑈𝑖

𝑑𝐺

𝑑𝑉𝑖

𝑑𝐺

𝑑𝑈𝑖]
 
 
 
 

, 

 

 

 

 

(4.5) 

where 𝑖 =  1,2,3.  Therefore, we have 

  

𝐽𝑖 = [
−𝑘 −

ℎ

𝑞
 𝑈𝑖 −

ℎ

𝑞
 𝑉𝑖

ℎ 𝑈𝑖 ℎ 𝑉𝑖 − 𝑤

], 

 

 

 

 

(4.5) 

where 𝑖 =  1,2,3.  We can find the corresponding characteristic equation by calculating det (𝐽 −
𝜆 𝐼),  where 𝑑𝑒𝑡 is the determinant and 𝐼 is the corresponding identity matrix. So, 

  

(𝐽 − 𝜆 𝐼) = [
−𝑘 −

ℎ

𝑞
 𝑈 − 𝜆 −

ℎ

𝑞
 𝑉

ℎ 𝑈 ℎ 𝑉 − 𝑤 − 𝜆

], 

 

 

 

(4.6) 

and 



   

 

128 

 

  

𝑑𝑒𝑡(𝐽 − 𝜆 𝐼) = (−𝑘 −
ℎ

𝑞
 𝑈 − 𝜆) (ℎ 𝑉 − 𝑤 − 𝜆) +  

ℎ2

𝑞
 𝑉 𝑈. 

 

 

 

(4.7) 

Therefore, the corresponding characteristic equation is 

  

𝜆2 − (ℎ 𝑉 − 𝑤 − 𝑘 −
ℎ

𝑞
 𝑈)  𝜆 + 𝑘𝑤 − 𝑘ℎ 𝑉 +  

ℎ𝑤

𝑞
 𝑈 = 0. 

 

 

(4.8) 

4.2.1 Analyzing the First Equilibrium 𝑬𝟏 = (𝑽𝟏, 𝑼𝟏) =  (𝟎, 𝟎) 

From (4.5), we have the Jacobian  

  

𝐽𝑖 = [
−𝑘 −

ℎ

𝑞
 𝑈𝑖 −

ℎ

𝑞
 𝑉𝑖

ℎ 𝑈𝑖 ℎ 𝑉𝑖 − 𝑤

], 

 

 

 

 

(4.9) 

where 𝑖 =  1,2,3.  When 𝐸1 = (𝑉1, 𝑈1) =  (0, 0), the Jacobian becomes 

  

𝐽1 = [
−𝑘 0
0 −𝑤

], 

 

 

 

 

(4.10) 

Hence, the corresponding characteristic equation of the steady state 𝐸1 is 

  

𝜆2 + (𝑤 + 𝑘) 𝜆 + 𝑘𝑤 = 0. 
 

(4.11) 

Therefore, we have the following results.  

Theorem 1.  Let  𝑘, ℎ, 𝑞, 𝑤 > 0.  The equilibrium 𝐸1 = (𝑉1, 𝑈1) =  (0, 0) of the model (4.1) is a 

stable node. 

Proof. By (4.10), we have  

  

𝐽1 = [
−𝑘 0
0 −𝑤

]. 

 

 

(4.13) 

(4.13) shows that the trace is 𝑇𝑟(𝐽1) =  −(𝑘 + 𝑤),  and the determinant is 𝑑𝑒𝑡(𝐽1) =  𝑘𝑤. Since 

𝑘, ℎ, 𝑞, 𝑤 > 0, the trace is always negative, and the determinant is always positive.  Therefore, the 

equilibrium 𝐸1 = (𝑉1, 𝑈1) =  (0, 0) is a stable node. 

4.2.2 Analyzing the Second Equilibrium 𝑬𝟐 = (𝑽𝟐, 𝑼𝟐) =  (
𝝋

𝒌
, 𝟎). 

We have the Jacobian  

  

𝐽𝑖 = [
−𝑘 −

ℎ

𝑞
 𝑈𝑖 −

ℎ

𝑞
 𝑉𝑖

ℎ 𝑈𝑖 ℎ 𝑉𝑖 − 𝑤

], 

 

 

 

 

(4.14) 
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where 𝑖 =  1,2,3. So, the Jacobian of  𝐸2 = (𝑉2, 𝑈2) =  (
𝜑

𝑘
, 0) is 

  

𝐽2 =

[
 
 
 −𝑘 −

ℎ𝜑

𝑞𝑘
 

0  
ℎ𝜑

𝑘
− 𝑤]

 
 
 

. 

 

 

 

 

(4.15) 

The characteristic equation of the steady state 𝐸2 = (𝑉2, 𝑈2) =  (
𝜑

𝑘
, 0) is equivalent to 

  

𝜆2 + (𝑘 −
ℎ𝜑

𝑘
+ 𝑤)  𝜆 − ℎ 𝜑 + 𝑘𝑤 = 0. 

 

 

 

 

Therefore, the trace of 𝐽2   is 𝑇𝑟(𝐽2) =  −𝑘 +
ℎ𝜑

𝑘
− 𝑤,  and the determinant is 𝑑𝑒𝑡(𝐽2) =  𝑘𝑤 −

ℎ 𝜑 . This gives the following Theorem.  

Theorem 2.  Let  𝑘, ℎ, 𝑞, 𝑤 > 0.  The equilibrium 𝐸2 = (𝑉2, 𝑈2) =  (
𝜑

𝑘
, 0) of the model (4.1) is  

1. a stable node if  ℎ 𝜑 <  𝑘2 + 𝑘𝑤 , and ℎ 𝜑 <  𝑘𝑤 . 
2. s saddle point if ℎ 𝜑 >  𝑘𝑤 . 

 

4.2.3 Analyzing the Third Equilibrium 𝑬𝟑 = (𝑽𝟑, 𝑼𝟑) =  (
𝒘

𝒉
,
𝒒𝝋

𝒘
+ 

𝒌𝒒

𝒉
 ) 

We find that the Jacobian matrix to be 

  

𝐽𝑖 = [
−𝑘 −

ℎ

𝑞
 𝑈𝑖 −

ℎ

𝑞
 𝑉𝑖

ℎ 𝑈𝑖 ℎ 𝑉𝑖 − 𝑤

], 

 

 

 

 

(4.16) 

where 𝑖 =  1,2,3. When   𝑬𝟑 = (𝑽𝟑, 𝑼𝟑) =  (
𝒘

𝒉
,
𝒒𝝋

𝒘
+ 

𝒌𝒒

𝒉
 ),  the Jacobian matrix becomes 

  

𝐽𝑖 =

[
 
 
 −𝑘 − 

ℎ 𝜑

𝑤
− 𝑘 −

𝑤

𝑞
 

ℎ𝑞𝜑

𝑤
+  𝑘𝑞 0 ]

 
 
 

. 

 

 

 

 

(4.17) 

The characteristic equation of the steady state 𝑬𝟑 = (𝑽𝟑, 𝑼𝟑) =  (
𝒘

𝒉
,
𝒒𝝋

𝒘
+ 

𝒌𝒒

𝒉
 ) is 

  

𝜆2 + (𝑘 +
ℎ𝜑

𝑤
+ 𝑘ℎ)  𝜆 + ℎ 𝜑 + 𝑘𝑤 = 0. 

 

 

 

(4.18) 

Theorem 3.  Let  𝑘, ℎ, 𝑞, 𝑤 > 0.  The equilibrium 𝐸3 = (𝑉3, 𝑈3) =  (
𝑤

ℎ
,
𝑞𝜑

𝑤
+ 

𝑘𝑞

ℎ
 ) of the model 

(4.1) is a stable node. 
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Proof. By (4.17), we have  

  

𝐽𝑖 =

[
 
 
 −2𝑘 − 

ℎ 𝜑

𝑤
−

𝑤

𝑞
 

ℎ𝑞𝜑

𝑤
+  𝑘𝑞 0 ]

 
 
 

. 

 

 

 

 

(4.19) 

 

(4.13) shows that the trace is 𝑇𝑟(𝐽3) =  −2𝑘 − 
ℎ 𝜑

𝑤
,   and the determinant is 𝑑𝑒𝑡(𝐽3) =

 
𝑤

𝑞
(
ℎ𝑞𝜑

𝑤
+  𝑘𝑞) = ℎ𝜑 + 𝑤𝑘 .nce 𝑘, ℎ, 𝑞, 𝑤 > 0, the trace is always negative, and the determinant is 

always positive.  Therefore, the third equilibrium 𝐸3 = (𝑉3, 𝑈3) =  (
𝑤

ℎ
,
𝑞𝜑

𝑤
+ 

𝑘𝑞

ℎ
 ) is a stable node. 

 

 The equilibria and their stability conditions are summarized in Table 1. 

The Equilibria  Stability Conditions 

𝐸1 = (𝑉1, 𝑈1) =  (0, 0) Always stable. 

𝐸2 = (𝑉2, 𝑈2) =  (
𝜑

𝑘
, 0) Stable if  ℎ 𝜑 <  𝑘2 + 𝑘𝑤 , and ℎ 𝜑 <  𝑘𝑤 . 

Saddle point if ℎ 𝜑 >  𝑘𝑤 . 

𝐸3 = (𝑉3, 𝑈3) =  (
𝑤

ℎ
,
𝑞𝜑

𝑤
+ 

𝑘𝑞

ℎ
 ) 

Always stable 

Table 1. Equilibria and their stability conditions.  Here, 𝑘, ℎ, 𝑞, 𝑤 >  0. 

5. Numerical Analysis and Simulations 

5.1 Numerical solutions of the proposed model 

In this part, we seek the numerical solution of the system (2.1) by assuming ℎ is a constant, 

i.e., we will solve the following model 

 𝑑𝑉(𝑡)

𝑑𝑡
=  𝜑 − 𝑘 𝑉(𝑡) − 

ℎ

𝑞
 𝑉(𝑡)𝑈(𝑡), 

𝑑𝑈(𝑡)

𝑑𝑡
= ℎ 𝑉(𝑡) 𝑈(𝑡) −  𝑤 𝑈(𝑡), 

 

 

(5.1) 

where 𝑡 ∈  [0, 150]. The numerical values of the parameters 𝑘, ℎ, 𝑞, 𝑤 are chosen differently. The 

numerical solutions of the model (5.1) are demonstrated in Fig. 1, Fig. 2, and Fig. 3. 
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(a) 𝜑 = 0 (b) 𝜑 = 0.01 

  

(c) 𝜑 = 0.4 (d) 𝜑 = 1 

Figure 1: The resource and consumer model dynamics at different values of  𝜑.  The dashed line is the 

biomass of food resources 𝑉, while the solid line is the consumer biomass of the population 𝑈. 

 

  

(a) 𝒌 = 𝟎. 𝟐 (b) 𝒌 = 𝟎. 𝟒𝟐 

Figure 2: The resource and consumer model dynamics at different values of 𝑘. The dashed line is the 

biomass of food resources 𝑉, while the solid line is the consumer biomass of the population 𝑈.  Other 

values are 𝜑 =  0.2,   ℎ = 0.6, 𝑞 = 1, 𝑤 = 0.1. 
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(a)  (b)  

Figure 3: The numerical solutions of the resource-consumer model.  The dashed line is the biomass of 

food resources 𝑉, while the solid line is the consumer biomass of the population 𝑈.  Here, (a) 𝜑 =
 0.00001, 𝑘 = 0.03, ℎ = 0.2, 𝑞 = 1, 𝑤 = 0.001. (b) 𝜑 =  0.01, 𝑘 = 0.05, ℎ = 0.02, 𝑞 = 100, 𝑤 = 0.1. 

5.2 Numerical analysis of the steady states 

This section discusses the resulting dynamics of the steady states.  The model we solve numerically 

is 

 𝑑𝑉(𝑡)

𝑑𝑡
=  𝜑 − 𝑘 𝑉(𝑡) − 

ℎ

𝑞
 𝑉(𝑡)𝑈(𝑡), 

𝑑𝑈(𝑡)

𝑑𝑡
= ℎ 𝑉(𝑡) 𝑈(𝑡) −  𝑤 𝑈(𝑡). 

 

 

(5.2) 

The steady-state solutions of (5.2) are given in Fig. 4, Fig. 5, and Fig. 6.  Fig. 4, Fig. 5, and Fig. 6. 

demonstrate Phase-plots of the biomass of food resources 𝑉(𝑡) against the consumers' biomass of 

the population 𝑈(𝑡). Assuming 𝜑 =  0 leads to decreased consumers' biomass due to the lack of 

food resources as in Fig. 4 (a).  In this case, the biomass of food resources 𝑉(𝑡) and the consumers' 

biomass of the population 𝑈(𝑡)go to zero with time, which shows that the equilibria 𝐸∗ = (0, 0) is 

locally asymptotically stable.  In case 𝜑 =  0.01 the consumer biomass of the population 𝑈(𝑡) 

reduces to zero, while the biomass of food resources 𝑉(𝑡) converges to 0.1.  With this option, the 

equilibria 𝐸∗ = (𝑉∗, 𝑈∗) = (0.1, 0) is also locally asymptotically stable as in Fig. 4(b).  

When 0.4 ≤  𝜑 ≤ 1,  the interior equilibria are locally asymptotically stable as given in Fig. 

4(c)(d).  Fig. 5 displays that both the biomass of food resources 𝑉(𝑡) and the consumers' biomass 

of the population 𝑈(𝑡) will reach the positive interior equilibrium, which is locally asymptotically 

stable in this case.  

Fig. 6(a) illustrates that the biomass of food resources 𝑉(𝑡) converges to zero, while the consumer 

biomass of the population 𝑈(𝑡) approaches 0.2. Therefore, the equilibria 𝐸∗ = (𝑉∗, 𝑈∗) = (0, 0.2) 

is locally asymptotically stable. Fig. 6(b) indicates that the biomass of food resources 𝑉(𝑡) 

converges to 0.2 , while the consumers' biomass of the population 𝑈(𝑡) approaches zero. We 

conclude that the interior equilibria 𝐸∗ = (𝑉∗, 𝑈∗) = (0.2, 0) is locally asymptotically stable. 
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(a) 𝜑 = 0 (b) 𝜑 = 0.01 

  

(c) 𝜑 = 0.4 (d) 𝜑 = 1 

Figure 4: Phase-plots of the biomass of food resources 𝑉(𝑡) over the consumers biomass of the 

population 𝑈(𝑡) at different values of 𝜑. 

  

(a) 𝒌 = 𝟎. 𝟐 (b) 𝒌 = 𝟎. 𝟒𝟐 

Figure 5: The resource and consumer model dynamics at different values of 𝑘. The dashed line is the 

biomass of food resources 𝑉, while the solid line is the consumer biomass of the population 𝑈.  Other 

values are 𝜑 =  0.2,   ℎ = 0.6, 𝑞 = 1, 𝑤 = 0.1. 
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(a)  (b)  

Figure 6: The numerical solutions of the resource-consumer model.  The dashed line is the biomass of 

food resources 𝑉, while the solid line is the consumer biomass of the population 𝑈.  Here, (a) 𝜑 =
 0.00001, 𝑘 = 0.03, ℎ = 0.2, 𝑞 = 1, 𝑤 = 0.001. (b) 𝜑 =  0.01, 𝑘 = 0.05, ℎ = 0.02, 𝑞 = 100, 𝑤 = 0.1. 

6. Discussion and conclusion 

The article examines a mathematical model that contains food (the resources) and the population 

(the consumer).  The analytic and numerical results verify the existence of the solutions.  When there 

are not enough resources, i.e., 𝜑 → 0, the biomass of the resources 𝑉 and the biomass of the consumers 

𝑈 converge to zero, as in Fig. 1(a)(b) and Fig. 4(a)(b).  This situation leads to the first equilibrium 𝐸1 =
(𝑉1, 𝑈1) =  (0, 0), where the biomass of the resources 𝑉 and the biomass of the consumers 𝑈 collapse. 

As we increase the amount of food provided to the population, we see that biomass of the resources 

and consumers approach a positive steady state, as demonstrated in Fig. 1(c)(d) and Fig. 2(a)(b). In this 

scenario, the biomass of the resources 𝑉 and the biomass of the consumers 𝑈 coexist. 

Fig. 3 (a) illustrates that the consumer's biomass could temporarily grow when there are not enough 

resources. If 𝑞 → ∞ ,  the consumer's biomass plunges to zero while the resource biomass continues to 

exist as  𝑡 → ∞ , as reflected in Fig. 3(b).  

This paper analytically shows the existence of steady states. The numerical dynamics of the steady-

state solutions are provided in Section 5.  By (Theorem 1), The equilibrium 𝐸1 = (𝑉1, 𝑈1) =  (0, 0) is 

a stable node if we have positive parameters of the proposed model.  The second steady state 𝐸2 =

(𝑉2, 𝑈2) =  (
𝜑

𝑘
, 0) is either a stable node or saddle point as discussed in Theorem 2.  Theorem 3 reveals 

that the equilibrium 𝐸3 = (𝑉3, 𝑈3) =  (
𝑤

ℎ
,
𝑞𝜑

𝑤
+ 

𝑘𝑞

ℎ
 ) is a stable node. The equilibrium points and their 

stability conditions are summarized in Table 1. These results are proven based on the results and 

conditions provided by Leah [4]. 

In the future, we will study the model with delay to further investigate the dynamics. We will also 

discuss the influence of ℎ(𝑡) as a function of time on the system's dynamics. 
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