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Abstract. In this paper, we survey recent progress on the theory of Gromov-
Witten invariants on Hilbert schemes of points mainly on elliptic surfaces and
simply connected minimal surface of general type. In particular, we focus on
the aspects of computational progress that has been done in the cases of lower
genus. Then, we discuss some important conjectures that have been proposed
and gather all available information and progress toward answering them.

1. Introduction

Hilbert schemes are fundamental structures in algebraic geometry. They allow
the study of certain family of geometric objects in a given variety [6, 19]. Specifi-
cally, Hilbert schemes of points parametrize zero dimensional closed subschemes in
a given scheme. This turns out to be a very significant structure that can be used to
study problems in enumerative geometry. On the other hand, Gromov-Witten in-
variants are topological invariants that count the number of curves passing through
a fixed set of points. Thus, studying curves passing through a given set of points
can be viewed as a study of geometry of Hilbert schemes as parameter spaces of
those fixed points. In general, Hilbert schemes of points can develop all sort of sin-
gularities on a given schemes, but for the case of surfaces they are always smooth
[4, 5]. The first progress toward study of 1-point Gromov-Witten invariants for
Hilbert schemes on surfaces was done in [15]. To briefly lay down their method:
let X [n] be the Hilbert scheme of points on a smiply-connected surface X that is
smooth and projective. We view elements of X [n] as length-n 0-dimensional closed
subschemes ξ of X. Let x1, · · · , xn−1 ∈ X be distinct fixed points. Put

M2(x1) = {ξ ∈ X [2]|Supp(ξ) = {x1}}.
M2(x1) is the punctual Hilbert scheme parametrizing length-2 0-dimensional closed
subschemes supported at x1 which is known to be isomorphic to the projective line
P1. Smooth rational curves in X [n] are described as

βn =: { ξ + x2 + · · ·+ xn−1 ∈ X [n]| ξ ∈ M2(x1)}. (1.1)

It is clear that these curves are mapped to points by the map

ρn : X [n] → X(n),
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which is the Hilbert-Chow morphism that sends elements in the Hilbert scheme
X [n] to their support on the n-th symmetric product X(n) [17, 18].

For an integer d > 0, let Mg,r(X
[n], dβn) be the moduli space of r-pointed stable

maps µ : (D; q1, · · · , qr) → X [n] where D is a nodal curve of genus g and q1, · · · qr ∈
D are distinct smooth points. It is known that the expected dimension of this
moduli spaces is given by

d = −(KX[n] · dβn) + (dim(X [n])− 3)(1− g) + r = (2n− 3) · (1− g) + r.

Let γ ∈ H4n−4(X [n],C) be a cohomology class, and let

evj : Mg,r(X
[n], dβn) → X [n]

be the evaluation map defined by evj([µ : (D; q1, · · · , qr) → X [n]]) = µ(qj). For the

virtual fundemental class [Mg,1(X
[n], dβn)]

vir, the 1-point Gromov-Witten invariant
is defined to be

⟨γ⟩X[n]

g,dβn
=

∫
[Mg,1(X[n],dβn)]vir

ev∗1(γ).

When X is a simply-connected smooth projective surface and motivated by
Ruan’s conjecture for a crepant resolution for the Hilbert-Chow morphism defined
above, Li and Qin made an investigation on the 1-point genus-0 Gromov-Witten
invariants of the crepant resolution ρn. They analyzed the obstruction bundle over
the moduli space M0,1(X

[n], dβn) and reduced their computation to only curves of
the type described in (1.1). As a result, they were able to compute the 1-point

genus-0 Gromov-Witten invariants ⟨γ⟩X[n]

0,dβn
in Theorem 3.5 [15].

In this article, we will mainly focus on the case when X is an elliptic surface,
in particular, the case X = C × E for some smooth projective curve C and some
elliptic curve E.
The article is orgenized as followes. In Section 2, we go over some main ideas and

definitions which are needed in the rest of this article. In Sec 3, we go over main
vanishing theorems detailing the reason for considering only specific cases that
give non-trivial contribution. In Section 4, we focus on a special type of elliptic
surfaces and put together most up to date calculation of the 1-point Gromo-Witten
invariants. We split this section into two subsections detailing techniques used to
tackle two cases depending on the genus. In Section 5, we collect the important
results for the case of minimal surfaces of general type.

Conventions: In this paper, an elliptic surface means a smooth projective surface
which admits an elliptic fiberation over a smooth curve and is relative minimal.
For a smooth projective surface X, let q = h1(X,OX) and

pg = h2(X,OX) = h0
(
X,OX(KX)

)
.

2. Quick review of stable maps and Gromov-Witten invariants

Let Y be a smooth projective variety. An r-pointed stable map to Y is defined
as a complete nodal curve D with r distinct ordered smooth points p1, . . . , pr along
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with a morphism µ : D → Y such that the data (µ,D, p1, . . . , pr) has only finitely
many automorphisms. We denote this stable map by

[µ : (D; p1, . . . , pr) → Y ],

or simply [µ : D → Y ]. For β ∈ H2(Y,Z), let Mg,r(Y, β) be the coarse moduli
space parametrizing the stable maps [µ : (D; p1, . . . , pr) → Y ] such that µ∗[D] = β
and the arithmetic genus of D is g. We define the i-th evaluation map as follows:

evi : Mg,r(Y, β) → Y, (2.1)

which is given by evi([µ : (D; p1, . . . , pr) → Y ]) = µ(pi). It is known [12, 13, 3]
that the coarse moduli space Mg,r(Y, β) is projective and has a virtual fundamental

class [Mg,r(Y, β)]
vir ∈ Ad(Mg,r(Y, β)) where

d = −(KY · β) + (dim(Y )− 3)(1− g) + r, (2.2)

is the expected complex dimension of Mg,r(Y, β), and Ad(Mg,r(Y, β)) denotes the

Chow group of d-dimensional cycles in the moduli space Mg,r(Y, β).
The Gromov-Witten invariants are defined by using the virtual fundamental

class [Mg,r(Y, β)]
vir. An element

α ∈ H∗(Y,C) def
=

2 dimC(Y )⊕
j=0

Hj(Y,C),

is referred to as homogeneous if α ∈ Hj(Y,C) for some j; in which case, we assign
|α| = j. Let α1, . . . , αr ∈ H∗(Y,C) be homogeneous such that

r∑
i=1

|αi| = 2d. (2.3)

The r-point Gromov-Witten invariant is then defined by

⟨α1, . . . , αr⟩Yg,β =

∫
[Mg,r(Y,β)]vir

ev∗1(α1)⊗ . . .⊗ ev∗r(αr). (2.4)

In particular, when r = 1, we see from the projection formula that

⟨α⟩Yg,β =

∫
ev1∗([Mg,1(Y,β)]vir)

α. (2.5)

For 0 ≤ i < r, we shall use

fr,i : Mg,r(Y, β) → Mg,i(Y, β) (2.6)

to stand for the forgetful map obtained by forgetting the last (r− i) marked points
and contracting all the unstable components.
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3. Vanishing theorems

The Vanishing Theorems developed in [8, 9, 14, 11, 10, 20] for Gromov-Witten
invariants provide a powerful tool for reducing cases in the study of Gromov-
Witten theory. The theorems assert that under certain conditions—such as when
the genus of the curve or the degree of the curve is sufficiently large—the Gromov-
Witten invariants of a variety vanish. This allows one to eliminate many potentially
non-trivial cases, focusing only on the relevant, non-vanishing contributions. By
systematically applying these theorems and their corollaries, one can simplify the
analysis of Gromov-Witten invariants and reduce the complexity of problems, mak-
ing it easier to extract meaningful results from the moduli spaces of stable maps
and their associated counts of curves. We will briefly go over some of the main
theorems that have been developed in the aforementioned papers and book.

Let X be a smooth projective complex surface. For simplicity, put

M = Mg,r(X
[n], β).

Assume that the surface X admits a non-trivial holomorphic 2-form

θ ∈ H0(X,Ω2
X) = H0(X,OX(KX)).

It is known that θ induces a holomorphic 2-form θ[n] of the Hilbert scheme X [n]

which can also be regarded as a map θ[n] : TX[n] → ΩX[n] . In turn, θ[n] induces a
regular cosection

σ : ObM −→ OM (3.1)

of the obstruction sheaf ObM of M. The degeneracy locus

M(σ) (3.2)

of σ is the subset of M consisting of all the stable maps u : Γ → X [n] such that
the composition

u∗(θ[n]) ◦ du : TΓreg → u∗TX[n]|Γreg → u∗ΩX[n]|Γreg (3.3)

is trivial over the regular locus Γreg of Γ.

Theorem 3.1. ([20, Theorem 13.6]) Let X be a simply connected smooth projective
complex surface admitting a holomorphic 2-form θ, and let C0,1, . . . , C0,s be the
irreducible components (with reduced scheme structures) of the zero divisor of θ. If

β ̸=
s∑

i=1

diβC0,i
− dβn

for some integers d1, . . . , ds ≥ 0 and d, then all the Gromov-Witten invariants of
X [n] defined via the moduli space Mg,r(X

[n], β) vanish.

Proof. It is known that the degeneracy locus M(σ) from (3.2) is empty ([20,
Lemma 13.5]). It follows from that

[Mg,r(X
[n], β)]vir = 0.

Therefore, all the Gromov-Witten invariants of X [n] defined via the moduli space
Mg,r(X

[n], β) vanish. □
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Corollary 3.2. ([20, Corollary 13.7]) Let X be a simply connected smooth projec-
tive complex surface admitting a holomorphic 2-form with irreducible zero divisor.
If β ̸= d0βKX

− dβn for some integer d and rational number d0 ≥ 0, then all
the Gromov-Witten invariants of X [n] defined via the moduli space Mg,r(X

[n], β)
vanish.

Proof. Let θ ∈ H0(X,Ω2
X) = H0(X,OX(KX)) be the holomorphic 2-form whose

zero divisor C0 is irreducible (but possibly non-reduced). Then,

KX = C0 = m(C0)red (3.4)

for some positive integer m, and the corollary follows from Theorem 3.1. □

Corollary 3.3. ([20, Corollary 13.9]) Let X be a simply connected (minimal) el-
liptic surface without multiple fibers and with positive geometric genus. Let n ≥ 2
and β ̸= 0. Then all the Gromov-Witten invariants without descendant insertions
defined via the moduli space Mg,r(X

[n], β) vanish, except possibly when 0 ≤ g ≤ 1
and β = d0βKX

− dβn for some integer d and rational number d0 ≥ 0.

Corollary 3.4. ([20, Corollary 13.10]) Let X be a simply connected minimal sur-
face of general type admitting a holomorphic 2-form with irreducible zero divisor.
Let n ≥ 2 and β ̸= 0. Then all the Gromov-Witten invariants without descendant
insertions defined via Mg,r(X

[n], β) vanish, except possibly in the following cases

(i) g = 0 and β = dβn for some integer d > 0;
(ii) g = 1 and β = dβn for some integer d > 0;
(iii) g = 0 and β = d0βKX

−dβn for some integer d and rational number d0 > 0.

Proof. In view of Corollary 3.2, it remains to consider the case when β = d0βKX
−

dβn for some integer d and rational number d0 ≥ 0.
When d0 = 0 and β = dβn with d > 0, and using the fact that the expected

dimension of Mg,r(X
[n], β) is

d = −KX[n] · β + (dimX [n] − 3)(1− g) + r, (3.5)

we see that the expected dimension of the moduli space Mg,r(X
[n], β) is equal to

d = (2n− 3)(1− g) + r.

If g ≥ 2, then all the Gromov-Witten invariants without descendant insertions
defined via Mg,r(X

[n], β) vanish by the Fundamental Class Axiom.
Next, assume that d0 > 0. Since K2

X ≥ 1, we see from (3.5) that

d < (2n− 3)(1− g) + r.

By the Fundamental Class Axiom, all the Gromov-Witten invariants without de-
scendant insertions vanish except possibly in the case when g = 0. □

4. The case for X [2] when X is an eliptic surface

Based on the analysis given in the previous section, we see that we can restrict
our attention to only the cases where the Gromov-Witten invariants do not vanish.
In this section, we collect all these important cases and provide a general look on
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how we prove them. We also show that these special cases are positive answers to
more general open conjectures.

4.1. When g = 0. We start this part by the following lemma, which we need to
establish some notations and also will be used to prove some theorems.

Lemma 4.1. ([2, Lemma 5.5]) Let X = C × E where E is an elliptic curve
and C is a smooth curve. Let p2 : C × X [2] → X [2], p̃1 : C × E(2) → C and
p̃2 : C × E(2) → E(2) be the natural projections. Then we have the exact sequence

0 → p̃∗2TE(2) → p∗2TX[2] |C×E(2) → p̃∗1TC ⊕
(
p̃∗1TC ⊗ p̃∗2L̃

−1
)
→ 0 (4.1)

where L̃ = OE(2)(2Ξ) ⊗ (AJ)∗OJ(−Θ̃) for some Theta divisor Θ̃ on J = Jac2(E),
and TE(2), TX[2] and TC are the tangent bundles of E(2), X [2] and C respectively.

By [2, (59)], there exists a bijective morphism

Ψg,r : Mg,r(d) → C ×Mg,r

(
E(2), d[f̃ ]

)
(4.2)

where Mg,r(d) = Mg,r

(
X [2], d(βf − 2β2)

)
and f̃ denotes a fiber of the Abel-Jacobi

map AJ : E(2) → Jac2(E).
Now, we state the first conjecture of this paper.

Conjecture 4.2. ([2, Conjecture 1.2]) Let d > 0. Let X be a smooth surface with
an elliptic fibration π : X → C for some smooth curve C. If KX = π∗κ for some
divisor κ, then

ev1∗

([
M0,1

(
X [2], d(βf − 2β2)

)]vir)
= −deg(κ)

d2
·
[
f (2)

]
∈ A2(X

[2])

where f denotes (the class of) a smooth fiber of π.

This conjecture is still open in general. The only known case is Theorem 4.3 ([2,
Theorem 5.7]). This special case is proved by using techniques of cosection local-
ization of Kim and Li [9], analyzing the degeneracy locus and studying obstruction
sheaf of the moduli space M0,1

(
X [2], d(βf − 2β2).

Theorem 4.3. ([2, Theorem 5.7]) Let X = C×E where E is an elliptic curve and
C is a smooth curve. Let d ≥ 1 and f be a fiber of the natural projection X → C.
Then,

ev1∗

([
M0,1

(
X [2], d(βf − 2β2)

)]vir)
= −2gC − 2

d2
·
[
f (2)

]
∈ A2(X

[2]).

In the following, we outline the proof of Theorem 4.3, which is broken down into
smaller steps.

Step 1: Put f = {c} × E where c ∈ C. For simplicity, put

E = (Ψ0,0)
∗(IdC × Φ)∗V⊗ τ ∗0

(
R1(f̃1,0)∗ẽv

∗
1OP(−1)

)
= (Ψ0,0)

∗((IdC × Φ)∗V⊗ ρ∗2
(
R1(f̃1,0)∗ẽv

∗
1OP(−1)

))
(4.3)

In [2], the authors established that

[M0,1(d)]
vir = (2− 2gC) · ev∗1

[
f (2)

]
· f ∗

1,0

(
c2d−2(E)

)
. (4.4)
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By projection formula, we have

ev1∗
(
[M0,1(d)]

vir
)

= (2− 2gC) ·
[
f (2)

]
· ev1∗f ∗

1,0

(
c2d−2(E)

)
. (4.5)

Step 2: Let m(d,X) = (2−2gC) ·ev1∗f ∗
1,0

(
c2d−2(E)

)
. To determine this rational

number m(d,X), choose very ample curves C1, C2 in X such that f, C1, C2 are in
general position. Let f ∩ C1 = {x1, . . . , xs} and f ∩ C2 = {y1, . . . , yt}. Then,
s = ⟨f, C1⟩, t = ⟨f, C2⟩, and a−1(C1)a−1(C2)|0⟩ (where a−1 denotes Heisenberg op-
erator, for more detalied construction see [20, Chapter 3]) and f (2) ⊂ X [2] intersect
transversally at the points ξi,j = xi + yj ∈ X [2], 1 ≤ i ≤ s and 1 ≤ j ≤ t. By (4.4),

[M0,1(d)]
vir · ev∗1

(
a−1(C1)a−1(C2)|0⟩

)
is equal to

st(2− 2gC) · ev∗1
[
ξi,j

]
· f ∗

1,0

(
c2d−2(E)

)
.

Step 3: Through various computations in ([2, Sec 5]), we have the following
relation

[M0,1(d)]
vir · ev∗1

(
a−1(C1)a−1(C2)|0⟩

)
=

1

d2
· ⟨f, C1⟩ · ⟨f, C2⟩ · (2− 2gC). (4.6)

By ([2, Theorem 5.3]) and comparing with (4.5), we get m(d,X) = (2− 2gC)/d
2.

4.2. When g = 1. For this case, we first state the following conjecture regarding
genus-1 Gromov-Witten invariants for Hilbert schemes of two points on elliptic
surfaces.

Conjecture 4.4. Let X be an elliptic surface without multiple fibers. Let d ≥ 1 and
f be a smooth fiber in X. Then,

⟨⟩X[2]

1, d(βf−2β2)
= (−1)d · χ(X),

where χ(X) denotes the Euler characteristic of X.

In [1], the author has computed a special case for certain types of elliptic surfaces.

Theorem 4.5. ([1, Theorem 3.7]) Let X = C×E where E is an elliptic curve and
C is a smooth curve. Let d ≥ 1 and f be a fiber of the natural projection X → C.
Then,

⟨⟩X[2]

1, d(βf−2β2)
= 0. (4.7)

The outline of the proof of Theorem 4.5 consists of expressing genus-1 Gromov-
Witten invariant ⟨⟩X[2]

1, d(βf−2β2)
in terms of the obstruction sheaf

Ob = R1(f1,0)∗ev
∗
1TX[2] . (4.8)

Step 1: By ([1, Lemma 3.5]), it is established that

⟨⟩X[2]

1, d(βf−2β2)
= c2d+2(Ob). (4.9)
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Step 2: Let E = R1(f1,0)∗(Ψ1,1)
∗(IdC × ẽv1)

∗(p̃∗1TC ⊕
(
p̃∗1TC ⊗ p̃∗2L̃

−1
))
. By the

disscusion in the proof of ([1, Theorem 3.7]), we have

⟨⟩X[2]

1, d(βf−2β2)
= −λ · c2d+1(E),

where λ = c1(H), i.e. the first Chern class of the rank-1 Hodge bundle overM1,0(d).
Step 3: Next, λ is computed by proving that the intersection of first Chern

class of H̃, which is the Hodge bundle over M1,0

(
E(2), d[f̃ ]

)
, with c2d

(
Ẽ ⊗Φ∗OJ(Θ̃)

)
equals zero which establishes the theorem.

5. The case for X [2] when X is simply connected minimal surface of
general type

Another known computations for simply connected minimal surface of general
type have been done in the work of [14].

Theorem 5.1. ([14, Theorem 6.7]) Let X be a simply connected minimal surface
of general type with K2

X = 1 and 1 ≤ pg ≤ 2 such that every member in |KX | is
smooth. Then,

⟨1⟩X[2]

0, βKX
−3β2

= (−1)χ(OX).

To outline the proof, we need to consider two separate cases of pg. Namely,
pg = 1 and pg = 2.
Step 1: If X is simply connected surface, then the Euler characteristic χ(OX) =

1 + pg. Specifically, if arithmetic genus pg = 1, M0,0(X
[2], βKX

− 3β2) is a smooth

point; so ⟨1⟩X[2]

0, βKX
−3β2

= 1 = (−1)2 and the formula holds.

Step 2: Explicitly describe the line bundle R1f∗Ψ
∗TX[2] , where ev1 = Ψ is the

evaluation map defined earlier. The description of this line bundle is

R1f∗Ψ
∗TX[2]

∼= O|KX |(2)⊗R1f∗
(
p̃∗OX̃(E)

)
, (5.1)

where E ⊂ X̃ is the exceptional curve of the blow up X̃ of X.
Step 3: By (5.1), the authors explicitly descried the term R1f∗

(
p̃∗OX̃(E)

)
. In

order to do this, they determine the ruled surface E which is the exceptional divisor
of the blowing-up of Jac2(C/|KX |) along some section of the natural projection of
Jac2(C/|KX |) onto |KX | where C ⊂ |KX | ×X is the family of curves parametrized
by |KX |.
Step 4: They proved that the ruled surface E is the Hirzebruch surface F2 =

P
(
O|KX | ⊕ O|KX |(−2)

)
. By the Grothendieck-Riemann-Roch Theorem, and using

some exact equences they established alomng the paper, they proved that

R1f∗
(
p̃∗OX̃(E)

) ∼= O|KX |(−5)⊗
(
(f∗OE)

∨ ⊗O|KX |(−2)∨
)
∼= O|KX |(−3). (5.2)

Step 5: Combining (5.1 ) and (5.2), they obtain that

R1f∗Ψ
∗TX[2]

∼= O|KX |(2)⊗O|KX |(−3) = O|KX |(−1).
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Step 6: By combining the last result with the following proposition, which we
state here for completeness,

Proposition 5.2. ([14, Proposition 2.1])
Let β ∈ H2(Y,Z) and β ̸= 0. Let e be the excess dimension of the moduli space

Mg,r(Y, β). If R1(fr+1,r)∗(evr+1)
∗TY is a rank-e locally free sheaf over Mg,r(Y, β),

then Mg,r(Y, β) is smooth (as a stack) of dimension

d+ e = −(KY · β) + (dim(Y )− 3)(1− g) + r + e, (5.3)

and [Mg,r(Y, β)]
vir = ce

(
R1(fr+1,r)∗(evr+1)

∗TY

)
∩ [Mg,r(Y, β)/Mg,r].

they obtained that

⟨1⟩X[2]

0, βKX
−3β2

= deg [M]vir = deg c1
(
R1f∗Ψ

∗TX[2]

)
= −1. □

.

6. conclusion

As discussed in the previous sections, we see promising opportunity to over come
some of the difficulties arise during the computations. The Main difficulties when it
comes to calculating Gromov-Witten invariants are the various techniques needed
to carry out the computations. Another possible direction is to generalize to a
another class of surfaces, and it would be interesting if any of the aforementioned
theorems can be generalized to other types of surfaces.
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